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Objectives

 Generation of controlled and worst-case bleed air oil-contamination events in a simulator (BACS) to thoroughly 
characterize the fume composition and to allow exposure tests for toxicological assessment 
 Selection of analytical methods based on already existing data on cabin air and oil analyses regarding expected 

contaminant concentrations
 Connection of the test bench (BACS) to the mobile toxicological laboratory (RIVM MAPCEL) via a transfer-line and proof 

that fume transfer works and oil fume composition remains the same
 Performance of pre-tests and dose range finding prior to main exposure test
 Use of BACS to simulate HEPA filter contamination by an oil related fume event and comparison with HEPA filters from 

real aircraft exposed / not exposed to a reported (oil) fume event
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Simulation of CAC events by use of a Bleed Air Contamination Simulator (BACS)

 BACS emulates the air supply system of an aircraft cabin
 Bleed air contamination events are simulated by dosing the contaminant (e.g. Mobil Jet Oil II) into hot 

(up to 590 °C), compressed (up to 8 bar) air and leading this through several expansion and cooling steps 
until the air has reached ambient conditions (“cabin” / sampling vessel) 
 Bleed air dilution by recirculated air is omitted 
 Focus will be put on engine oil contamination events as these are of biggest concern
 At ambient conditions the air will be thoroughly characterized by on-line monitoring and off-line analyses especially 

with regard to engine oil breakdown products
 Knowledge of the physico-chemical composition of the air is the pre-requisite for toxicological hazard identification 

and the targeted animal exposure studies in the RIVM mobile toxicological laboratory
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Advantages

 BACS allows the generation and measurement of possible bleed air contamination by an oil-related fume event 
independent from aircraft variables (age, type of engine, engine configuration, ECS, air distribution system, etc.)
 Potential contaminants can be introduced in a controlled way
 Sensors and measuring equipment along the air path allow thorough characterization
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Bleed Air Contamination Simulator BACS
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Bleed Air Contamination Simulator BACS

 T possible up to 590 °C and p possible up to 8 bar
 Previous experiments:
 Different oils (engine / hydraulic)
 Amounts up to 80 mg/m³
 Ideal for chemical analysis: 1 mg/m³
 Most breakdown products at T = 350 °C
 No to minimal influence of pressure
 BACS set point T = 350°C, p = 6 bar
 Mobil Jet Oil II (most commonly used)
 ACER/VIPR experiments dosed 6 mg/m³
 Range finding experiments planned to see effects
 Worst case starting point 50-100 mg/m³
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25-30°C

50°C

-10°C

25°C

 Are there any alterations in the oil fume composition 
caused by the transfer-line? 
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Worst case length of 
transfer-line from 
BACS to exposure unit 
in MAPCEL:  9 m

Rental PTR-MS from 
Ionicon, Innsbruck, 
with remote access 
from Airbus HH
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Pre-tests

 Dosing of MJO II to check whether at the end of the transfer-line after 1:1 dilution the oil vapour composition 
remains the same
 Dosed oil amounts: 1, 3, 5, 6, 10, 20, 30, 40, 50, 60, 100 mg/m³ (100 is the planned start concentration)
 Measurement locations: 

 BACS vessel (before transfer-line), 

 exposure unit after transfer-line and 1:1 dilution, 

 1:10 dilution box (for PTR-MS at high oil concentrations)

 Sampling of VOCs, aldehydes, organic acids and organophosphates at BACS vessel before the transfer-line and 
after the transfer-line and 1:1 dilution for ITEM
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BACS on-line analytics
Compound Measurement principle Measurement range

Carbon monoxide CO IR absorption 1 - 1000 ppb

Carbon dioxide CO2 IR absorption 100 - 10000 ppm

Ozone O3 UV Photometry (254 nm) 1 - 1000 ppb

Nitrogen oxides NO/NOx Chemiluminescence 1 - 1000 ppb

Total Volatile Organic Compounds

(TVOC)

Flame Ionisation Detector FID 

or Photo-Ionisation-Detector 

PID

100 ppb - 100 ppm

1 - 10000 ppb

Selected Volatile Organic

Compounds (VOCs)

on-line Proton-Transfer-

Reaction-Mass-Spectrometry 

PTR-MS

1 ppt - 100 ppb

Aircraft operating fluids

Ion Mobility Spectrometer 

(Aerotracer), pattern 

recognition

Instrument own odor scale

Particulate Matter different 10 nm – 20 µm
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On-line monitors

 Carbon monoxide (CO)
 Measurement principle: IR at 4.7 µm
 Interferences:  CO2 und H2O  -  BACS air is dry, 0-1 % humidity
 Carbon dioxide (CO2)
 Measurement principle: IR at 4.3 µm
 Interferences:  H2O  -  BACS air is dry, 0-1% humidity   
 Nitrogen oxides (NOx)
 Measurement principle: Chemoluminiscence
 Interferences:  not known     
 Ozone (O3)
 Measurement principle: UV at 254 nm
 Interferences:  SO2, NO2, NO, H2O and aromatic hydrocarbon meta-xylene and mercury  
    vapour (also other aromatic compounds? Particles?)

 Since at 254 nm many compounds may absorb, we rather talk of an UV monitor!
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Particle counters for pre-tests

 TSI WCPC 3788 2.5 – 1000 nm, sampling rate 1.5 L/min 
(may be exchanged by a Butanol CPC if available from other project 

partners, Butanol CPC will be used in MAPCELs)

 TSI P-Trak 8525 20 – 1000 nm, sampling rate 0.1 L/min 

 TSI Nanoscan SMPS 3910 10 – 421.7 nm, 13 channels, sampling rate 0.75 L/min 

 TSI OPSS 3330 0.3 – 10 µm, 16 channels, sampling rate 1.0 L/min 



Internal

BACS off-line analytics (Fraunhofer ITEM)

Compound class Method Guideline No of 
compounds 
covered

LOQ LOD

VOCs ATD-GC-MS ISO 16000-6 > 150 0.05 - 0.3 µg/m3 0,01 - 0.2 µg/m3

Aldehydes /
ketones

LC-UV 
(DNPH)

ISO 16000-3 15 ~2 - 4 µg/m3 ~1 - 2 µg/m3

Organic acids GC-MS OP-ITEM 
optimized 
for dust

12-14 0.1 µg/mL 0.03 µg/mL

Organo-
phosphorus
compounds

GC-MS ISO 16000-31 22 2 ng/mL extract
25 ng ng/g dust

0.7 ng/mL extract
8.8 ng ng/g dust

Tri cresyl
phosphates

GC-MS OP-ITEM based 
on ISO 16000-
31

10 isomers 1 ng/mL extract
13 ng ng/g dust

0.2 ng/mL extract
3 ng ng/g dust

Metals (Co, Be,
Cr)

ICP-MS OP-ITEM based 
on 
VDI 2267

3+x ~5 ng/g dust ~2.5 ng/g dust

Unknowns (all
compound
classes)

NMR / GC-
and LC-MS / 
UV / IR 

Fh-ITEM core 
competency

∞ not relevant Approx. 50 µg 
absolute if NMR is 
applied
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Stability of BACS 
T and p conditions 
over hours

Injection point
T = 350°C, p = 6 bar

Middle section
T = 200°C, p = 3 bar

Sampling vessel
T, p = ambient
T = 25-30°C
P = 0.92-0.96 bar
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Flame Ionisation 
Detector (FID) 
reading 
depending on dosed 
oil amount
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Linear regression 
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UV monitor reading 
depending on dosed 
oil amount
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Linear regression
UV-monitor
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 Oil dosing target concentration results in same monitor reading
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Monitoring stability and reproducibility when dosing high oil amounts over hours
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Max. mean particle size increases 
from ~20 to ~90 nm
with dosed oil amount increase from 
1 to 100 mg/m³

ASHRAE study at KSU on bleed 
air contamination with engine 
oils also showed that the 
max. particle size increases from 
~50 to ~80 nm 
when injected oil amount is 
increased from 1 to 5 ppm 
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Dosing of MJO II to 
check whether at the 
end of the transfer-line 
after 1:1 dilution the oil 
vapour composition 
remains the same

PTR-MS results
pre-tests 
Nov 15, 2022
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Dosing of high oil amounts over hours – 100 mg/m³ with PTR-MS at 1:10 dilution

 Note: sometimes more compounds show the same m/z fragment and cannot be differentiated  Off-line analytics
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Dosed oil amount Pentanoic acid concentration [ppb] PTR-MS

[mg/m³] BACS vessel
Exposure unit after transfer-line 

and 1:1 dilution 1:10 dilution box 
1 18 9
3 42 21 4
6 69 34 7

10 89 44 9
20 12
30 16
40 18
50 22
60 25

100 40

Sampling of VOCs, aldehydes, organic acids and organo phosphates at BACS vessel and 1:1 dilution  ITEM

Dosing of MJO II to check whether at the end of the transfer-line after 1:1 dilution the oil vapour composition 
remains the same – pentanoic acid
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Conclusions

   Composition and amount of the oil fume is not affected by the transfer-line

   The hydrolysis process of oil esters is in line with the known chemistry

   The oil fume is dominated by oil esters and carboxylic acids

   The formed carboxylic acids are most possibly the root cause of the oil smell
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Back-up

   Particles
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Measurement with rented 
Palas SMPS when 
3, 30 and 60 mg/m³ of MJO 
II was injected:

Shift of the particle size 
maximum from 
20 via 55 to 80 nm
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Result from ASHRAE study at 
KSU on bleed air contamination 
with MJO II:

Max. particle size increases from 
~50 to ~80 nm 

when injected oil amount is 
increased from 
1 via 3 to 5 ppm 
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