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Context and Problem Statement

Helicopter Different Usages imply the definition of Diversified Maintenance Plans
% tailored to the actual usage of every specific fleet

@ Helicopter Maintenance Plans are usually defined based on Design Usage Assumptions

that may differ from the actual operating scenario

Flight Condition Recognition (FCR) for an

Effective Structural Usage Monitoring v

Effective Maintenance Plans can be defined through a Periodical Validation

of the Design Usage Assumptions with the following benefits:

slf"w
GJr Costs Reduction and Flight Safety Assurance

Ll_' Customised and Flexible Maintenance Operations

== instead of Time-Based Maintenance (TBM)
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Context and Problem Statement - LHD Proposal

Health and Usage Monitoring <
System (HUMS)

« Time-histories flight parameters

Data-driven Algorithms Load Survey
e Trained on Load Survey Flights data Flights

Regime A Regime BI Regime A| Regime C
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Dataset description

» Load Survey Flights: Time-series of 28 Flight Parameters & Labelled Regimes
v’ (2/3) of Dataset for Training (on partitioned manoeuvres) the Supervised ML Algorithm
v (1/3) of Dataset for Testing & Verifying (on full flights) the Supervised ML Algorithm

Category # variables Regime A heglme B| Regime A| Regime C

Pilot Commands 4 | ﬁ‘f’\ P

Enai 8 Ay —
I— ngines 6 g — _J
— Attitudes and Rates 6 E M%’*\f\\/\/\

Ground Speeds 2 eGP Zan) /\¥ A

Speeds and Accelerations 6 || | M‘"‘H‘*’” pme

Environmental Conditions 4

AW189

Number of > 5100 Number of > 5200 Number of
maneuvers maneuvers MERENE S
Number of flights ESRkl) Number of flights B Number of flights
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Dataset description - Exploratory Data Analysis and Pre-processing

» Unbalanced Dataset > Over 300 standard flight regimes aggregated into 53 Macro-categories
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Dataset description - Exploratory Data Analysis and Pre-processing

» Qutliers removed from Training/Testing Dataset

» Non-uniform duration distribution of the 53 Macro-categories > Sliding Windows Approach
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FCR through ML Algorithms - Design phase/Sliding Windows Approach
» Single Sliding Window

Labelled maneuver in full flight
(in testing phase)
f \ s Sliding Windows
2 ; i . . . . . . .
o oo | :ﬁ,. Timeoffight 15 Starting/ending points of each flight regime are a priori

unknown in real flight operations

: .: : a o A Sliding Window Approach has been applied to extract from
| 5 P each window statistical features (MEAN, STD, MIN, MAX)

; := | o A properly Trained Random Forest Model has been designed
. | and implemented to obtain the prediction for each time-step

Sliding \f\lindow

[probability distributions]

. N N\ > Prediction || s

f Extract L riined Prediction _ mullusil e s s,
Statistical Random

> Feaet:::: on > o est Prediction u sl ol

SIS Ny S s Prediction _ me wdl u.

> Prediction . sl ses
-
i\ - . v
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FCR through ML Algorithms - Design phase/Sliding Windows Approach

» Multiple Sliding Windows & Supervisor Model

Labelled maneuver in full flight

(in testing phase)
| Windows Sizes
l | , .
_ oo J oo Time offight 1 & To address the problem of manoeuvres with different
3 [ i duration, 4 windows sizes are defined: 8s, 16s, 32s and 64s
o |, ! — o L . .
2| ' =. o The predictions obtained in these 4 different scenarios are
= | oI then summarized in a final prediction by means of a
=2 ' ] Supervisor Model (i.e. a simple Logistic Regression)
5 ! oy
= : L
0 - _ -
! ! |
| 1
- ! ! |
' L ' [probability distributions] —
Prediction
[ Extract \—PK ) \Mwlé e Py . ..
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FCR through ML Algorithms - The Single Strategy Approach: 1st Strategy

> 15t Strategy for the 15t classification Level (Fully Data-Driven Approach)

{ | Entire-manoeuvres Approach

Sliding Windows Random Forest Model Trained on statistical
‘ features extracted from the entire manoeuvres

tO tl tZ t3 t4_ Tlme

I I of flight
l_i_l i i I: |: .‘ ------------------------------------ .‘
[ I r.
b F i icti
ORI s TN = G = e
’ e N Trained
= |_||:': v : Random
- E ' — Features : Forest Predictions
(16s) + &+ P from WS=16s | Model [ | Ws=16és
\ S S J : et Subervisor Final Prediction
. ': | Features : | manoeuvre) | | Predictions Islodel (probability
R — —— —" from WS=32s g e WS=32s distribution)
(32s) | | P : g‘i}; :
M [ S T Features Predictions | 2
L . ' E | i from WS=64s | % \_ /_’ WS=64s :
(64s) — _, e * Accuracy Precision Recall F-1 score
WS = 8s 0.72 0.81 0.64 0.63
{ } WS = 16s 0.83 0.85 0.78 0.78
Statistical features: WS = 32s 0.87 0.85 0.83 0.83
(MEAN, STD, MIN, MAX) WS = 64s 0.73 0.72 0.65 0.63
Supervisor 96% 94% 95% 94%
-}’{- 12
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FCR through ML Algorithms - The Single Strategy Approach: 2" Strategy

» 2nd Strateqgy for the 1t classification Level (Fully Data-Driven Approach)

Sliding Windows

---------------
+®

—————\
Trained RF

—

Sliced-manoeuvres Approach
Multiple RF Models Trained on sliced

manoeuvres partitioned from full-flights

-------------------
~

Time
to t; t, t3 t
oz s of flight
e
CEH
(8s) I: I: I_:| l';l-| I: \ Features
> R H J from WS=8s
SRR
I: P P — f Featusres
((16s) &+ 1 ' :I—II'. ) rom WS=16s
H'_::" I: ! | Features
R —— from WS=32s
(82s) & & i
} — Features
I I : : { | from WS=64s
(64s) L -

Statistical features:
(MEAN, STD, MIN, MAX)

o
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Trained RF Predictions
Model WS=16s
(_(WS=16s) )
CTmnd RE )
Trained RF | Predictions
Model "1 WS=32s
_(W5=32s) )
T E )
Trained RF Predictions
Model WS=64s
\_(W5=64s) )

----------------------------------

WS = 8s
WS = 16s
WS = 32s
WS = 64s
Supervisor
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Final Prediction

Supersisor ]—» (probabilty
distribution)

Accuracy Precision Recall
0.89 0.89 0.86
0.91 0.91 0.89
0.85 0.87 0.83
0.72 0.72 0.62
96% 96% 95%

F-1 score

0.88
0.90
0.85
0.70
96%
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FCR through ML Algorithms - Optimised Multi-strategy Approach: 15t & 2nd Strategies

> 15t & 2nd Strategies implemented in parallel for the 1%t classification Level

Sliding Windows

Time
of flight

I________

_I_---

II

|

L — = b =

=
~
@«

Statistical features:
(MEAN, STD, MIN, MAX)
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Features —H N Predictions
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’0‘.' ---------------------------- t.‘:‘
‘?’_—\ S
' Trained RF
; Fea\’;vges8 ‘3 Model | Predictions
rom =8s _
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= Trained RF —
eatures Model »| Predictions
from WS=16s (WS=165) WS=16s
— : Trained RF 5
eatures iy Model redictions
from WS=32s | : (WS=32s) > WS=32s
Trained RF
Features Model N Predictions
from WS=64s (WS=64s) WS=64s
o \WVOTOTS) )

llllllllllll

Final Prediction

Supervisor o
(probability
Model distribution)
Accuracy Precision
Supervisor 96% 94%
Supervisor 96% 96%
+| 2| Supervisor 97% 97%
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Nn.3 Patents

granted

Dashboard

f=
.
W

Manoeuvres

Classification

Recall F-1 score
95% 94%
95% 96%
96% 97% ﬁ
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FCR through ML Algorithms - Design phase/Macro-categories vs Usage Spectrum

> Dataset rebalancing through Aggregation @
v Dataset rebalancing o FCR @ 1t Classification Level: Fully Data-driven 1stClassification Level A\
: = approach for the recognition of the 53 Macro- (Macro-regimes)
procedure to improve _
categories Strategy 1 Strategy 2
the performance of =
Supervised ML algorithm o FCR @ 2" Classification Level: Data- & Model- ond Classification Level
driven approaches to recognise usage spectrum (Spectrum regimes)
regimes
All Standard
Maneuvers
, T T T T y_ T vy T y_ o vV !
Fully Data-driven [ FCR@1stLevel: Forward K Vertical I |
i| 53 Macro-categories Flight Bank Turn Take Off Pull-up i
approach : 9 I
L gy gy i e —— !
E— ———
1
Data- & Model- i FCR @2nd Level: Forward Flight Forward Flight Forward Flight Forward Flight |} [usage spectrum
. 1 . o
driven approaches | i| Flight Conditions 40KTS 60KTS 90KTS 150KTS i regimes]
e o o o o o o o o e e e o o o o o o o o
e 15
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FCR through ML Algorithms - Performance for Load Survey Flights

PARTITIONED MANEUVERS FLIGHTS at 15t Classification Level

AW189 @ PREDICTION ACCURACY ON PREDICTION ACCURACY ON FULL

98.5% 97.3%
(HUMS Family)

PARTITIONED MANEUVERS FLIGHTS at 1st Classification Level

@ PREDICTION ACCURACY ON  PREDICTION ACCURACY ON FULL

o )
(HUMS LH) 96.8% 96.4%
AW169 PREDICTION ACCURACY ON  PREDICTION ACCURACY ON FULL
PARTITIONED MANEUVERS FLIGHTS at 1t Classification Level
| 98.5% 97.3%

(HUMS Family)
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Application to Operative Fleets - End-to-end flight data analysis process

o Usage Monitoring of
operative Helicopters
Fleets through HUMS

Effective Structural
Usage Monitoring

r

Flight Condition
Recognition (FCR)

o~

o Verification & Validation of the Time
history of the flight parameters recorded

by HUMS - Ongoing

o Pipeline designed for Data
acquisition and Data Lake
Ingestion

o Data Lake population

o Verification & Validation of Output
of the ML-FCR algorithm for real

flight - Ongoing

y o Dashboard

7\1'
© 2025 Leonardo - Societa per azioni
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Application to Operative Fleets - Results and Discussion

> Dashboard

o The Dashboard allows visualizing the results of the ML-FCR Algorithm in terms of classified manoeuvres both
in Detailed and Aggregated way through 3 Environments

Fleet

Research data by determining a fleet

Helicopter

Research data by determining a helicopter

Flight

Research data by determining a flight

</ i

]

»  Visualize a single flight and explore how it was * Explore how a generic helicopter has been used « Explore how a generic helicopter fleet has been
segmented in terms of recognised manoeuvres across several different flights used across several different flights

*  Accessto the individual recognised manoeuvre * Visualize the total time spent by the considered *  Visualize the total time spent by the considered
to verify the trends of the characteristics flight helicopter in each recognised manoeuvres fleet in each recognised manoeuvres
parameters *  Visualize useful information: %-of-time and «  Visualize useful information: %-of-time and

e Visualize useful information: %-of-time and occurrences of the recognised flight regimes occurrences of the recognised flight regimes
occurrences of the recognised flight regimes

(et
\~ I "
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Application to Operative Fleets - Results and Discussion

» Dashboard - Fli lorer: Flight Segmentation Visualizer - 15t Classification Level

W Barometric altitude (ft) B Roll (degree) M True airspeed (kn) W WoW (bool)

//’_.\ 3
| | [V

— 1 st P —_—

2448

Time of flight (minutes)

ralling_pull_up_Ih
cyclic_pull_up

Macro-categories

(1): High prediction
confidence

i) 0.5 1 l
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Application to Operative Fleets - Results and Discussion

> Dashboard - Flight Explorer @ 1st Classification Level -
=~ ' 1stClassification Level _*

o Duration of flight conditions and Manoeuvres counting (Macro-regimes)
Strategy 1 Strategy 2

Time spent per flight conditions Number of occurrences per maneuverer flight conditions

<
Q9
5=
O
<
o)
0
=
<
i)
s

Flight condition

landing_FP
- og

landing
landing_FP

ng
transition

Time duration (seconds) Occurrences (#)

Duration of flight condition

m  Occurrences of flight condition

e
‘N~ - . B
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Application to Operative Fleets - Results and Discussion

> Dashboard - Helicopter Explorer @1st Classification Level —
1stClassification Level

o Duration of flight conditions and Manoeuvres counting (Macro-regimes)
Sy

Time spent per flight conditions Number of occurrences per maneuverer flight conditions

AFD 0 08 |

AUTOrot_entry
SUrtorot_recovery
azirmuth_foraand
azimuth_forwar_.
azimuth_forwar_.

bankturm_LH
banktum_RH
dlimb
dimb_transition
oyclic_pull_up
deceleration
descend
descend_transi_
forwand
howaring

Lardin

landing_|

lateral_reversal
longitudinal_r_
nomal_mpog
vormal_shutdown
normal_start_a
quarter |
quarter_recovery

autorot_entry [l
autorot_recovery [N
azimuth_forwar_ [
azimuth_forwar_. [N
bankturn L H |
banicturr R |
cimb |
diimb_transition |
eyclic pull up [N
deceleration [
escend |
descend_transi. [
landing - |
landing FP I
lateral_reversal [
longitudinal_r—. I
normal_shutdown [
normal_start_ 2 [
maw’_;f:":‘;ﬁ 1 quarter_recovery ]
reanward racov_ rearvard_entry [
r:}”ing_pu”_u... rearward_recov— |
rolling_pull_u_ rolling_pull_u_ i
T T rofling_pull_u_ [
rudder_reverzal [N
sideways_|H re_ |
sideways_RH_en_. |
sideways_RH_re_ |
spot_tum_LH [

Flight condition
Flight condition

sideshp_LH
sideslip_RH
sideways_LH
sideways |H re_
sideways_RH

sideways_RH_en__
sidsv.agééH_ra._.i i
S | 5
spot turn RH | _th_I?rr‘jH | ]
takeoff takeof [
takeoff FP Il L
taxing I
transition I

1k 2 3k 4k

Time durafion (minutes) Occurrences (#)

Durati f flight difi : "
= Durafion otfight condition B Occurrences of flight condition
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Application to Operative Fleets - Results and Discussion

» Dashboard - Fleet Explorer @15t Classification Level

o Mission comparison - Flight Conditions (% Time)

1stClassification Level _~\,.
(Macro-regimes)

Strategy 1 Strategy 2

23

175 BN PAX
mm EMS
. UTI , _ o
15.0 N OFF o Clustering of typical mission
AW . .
= profiles of an operative fleet
125 of a specific helicopter model
100 v
(1)) Ll
E
|_
S ‘ o Actual Usage Spectrum (AUS)
VS
5.0 Design Usage Spectrum (DUS)
2e v
0.0 B o Effective Structural Usage
) T o® W« o ) S0 X\ T Monitoring
-a"‘“\'(\ ‘d\-\ 20 N c© et N . 666 K
< P,ooe‘\e Oeoe’\ai o°° oo p o N).@O
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Application to Operative Fleets - Results and Discussion

» Dashboard - Fleet Explorer @15t Classification Level

o Mission comparison - Flight Conditions Occurrences (Num. Man. in 100h)

1stClassification Level _~\,.
(Macro-regimes)

—r Strategy 1 Strategy 2
mm EMS
800 . UTI , . .
B OFF o Clustering of typical mission
- AW ~ :
rofiles of an operative fleet
—— Fleet average B tes P
600 of a specific helicopter model
=
o
S ~—
c
= 400 o Actual Usage Spectrum (AUS)
VS
Design Usage Spectrum (DUS)
200
0 .
o Effective Structural Usage
o G o™ 0 O R\ wo® oo 2 . .
cla @ N 600\4&" N o & e.“"’(\%\\\ @6\1@‘5 Monitoring
C)\‘\“\b 65060
0
~
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Application to Operative Fleets - Results and Discussion

» Dashboard - Fleet Explorer @29 Classification Level

o Mission comparison - Forward Flight regimes (%Time)

1stClassification Level _~
(Macro-regimes)

25

Strategy 1 Strategy 2
N PAX Sl &
60 B EMS — -
. UTI 2nd Classification Level
B OFF (Spectrum regimes)
50 AW
—— Fleet average
40 ~
o o Actual Usage Spectrum (AUS)
=
= 30 VS
Design Usage Spectrum (DUS)
20
10 :
‘ . E o Effective Structural Usage
0 = L Monitoring
LOD‘ o® L © ol Z ® L 2 O /_'\,\ 7'\"\
g R 0¥~ o 1%° o®” 0¥~ o®”
_o! Y 0 I\ N\ N A
% Vne
~
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Application to Operative Fleets - Results and Discussion

> Dashboard - Fleet Explorer @219 Classification Level —
’ 1stClassification Level _~

o Mission comparison - Bank Turns Occurrences (Num. Man. in 100h) (Macro-regimes)

Strategy 1 Strategy 2

B PAX 2nd Classification Level
B EMS (Spectrum regimes)
. E UTI
BN OFF
AW
300 —— Fleet average < ;
200 o Actual Usage Spectrum (AUS)
100 VS
d Design Usage Spectrum (DUS)
© &
M NS
XS 2
AR X3 \ ~
7
)
A(\o & .
® o Effective Structural Usage
Monitoring
‘:({' 26
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Concluding Remarks

The proposed Multi-Strategy ML-based approach is
» Robust

> Flexible (easily adaptable to different aircraft variants)

> Scalable (with the number of available measurements)

> Easily re-trainable (if more or different measurements are available)

Effectively addresses the FCR problem enabling an

Effective Structural Usage Monitoring

— HQ

\lf } Customised and Flexible Maintenance Operations
( $\l/ instead of Time-Based Maintenance (TBM)

Maintenance Costs Reduction Flight Safety Assurance

o~

"~
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