
Research Project EASA.2011/6

MULCORS - Use of MULticore
proCessORs in airborne Systems

easa.europa.eu

Disclaimer

This study has been carried out for the European Aviation Safety Agency by an
external organization and expresses the opinion of the organization undertaking
the study. It is provided for information purposes only and the views expressed in
the study have not been adopted, endorsed or in any way approved by the
European Aviation Safety Agency. Consequently it should not be relied upon as a
statement, as any form of warranty, representation, undertaking, contractual, or
other commitment binding in law upon the European Aviation Safety Agency.

Ownership of all copyright and other intellectual property rights in this material
including any documentation, data and technical information, remains vested to
the European Aviation Safety Agency. All logo, copyrights, trademarks, and
registered trademarks that may be contained within are the property of their
respective owners.

Reproduction of this study, in whole or in part, is permitted under the condition
that the full body of this Disclaimer remains clearly and visibly affixed at all times
with such reproduced part.

MULCORS

EASA

 Thales Avionics page 1 Réf. CCC/12/006898 – rev. 07

EASA 2011.C31

“MULCORS” Project.

The Use of MULticore proCessORS in Airborne Systems”

THALES AVIONICS

Dossier ref. CCC/12/006898 – Rev. 07

Authors : Xavier JEAN, Marc GATTI Guy BERTHON, Marc FUMEY

MULCORS

EASA

 Thales Avionics page 2 Réf. CCC/12/006898 – rev. 07

REVISIONS

Revision Date Effect on § Description

00 November, 8
th

 2012 All Draft of the final Report

01 November, 20
th

 2012 All Creation of the document

02 November, 26
th

 2012 All Integration EASA remarks, 2012-11-23

Complement chapters regarding Tasks 1 & 2

03 December, 05
th

 2012 9.3.6.1..3 Adding a chapter regarding the Hypervisor

04 December, 07
th

 2012 6 & 13 Upgrade list for Chapters Literature Review and

References

05 December, 07
th

 2012 None Reference number which should the contract

number EASA.2011.C31.

Adding ® & ™

06 December, 08
th

 2012 All Modification of recommended guidelines

following MULCORS final report presentation

07 December, 16
th

 2012 All Modification of recommended guidelines

following MULCORS final report presentation

comments

MULCORS

EASA

 Thales Avionics page 3 Réf. CCC/12/006898 – rev. 07

1. DISCLAIMER 8

2. ACKNOWLEDGEMENTS 9

3. EXECUTIVE SUMMARY 10

3.1. AIMS / OBJECTIVES 10
3.2. OVERALL APPROACH 10
3.3. EASA EXPECTATIONS 10
3.4. FINDINGS ACHIEVEMENTS AND CONCLUSIONS 11

4. BACKGROUND 12

4.1. DIGITAL EMBEDDED AIRCRAFT SYSTEMS 12
4.2. USE OF COTS PROCESSORS IN EMBEDDED AIRCRAFT EQUIPMENT 12
4.3. USE OF MULTI-CORE IN EMBEDDED AIRCRAFT EQUIPMENT 13

5. AIMS AND OBJECTIVES 14

6. LITERATURE REVIEW 15

6.1. AVIONIC STANDARDS 15
6.2. OFFICIAL GUIDELINES 16
6.3. STUDIES ON PROCESSOR EVALUATION AND SELECTION 16
6.4. STUDIES ON ROBUST PARTITIONING 16
6.5. STUDIES ON WCET CALCULUS 17
6.6. STUDIES ON MULTICORE PROCESSORS SCHEDULING 18
6.7. STUDIES ON HYPERVISORS AND OPERATING SYSTEMS 18
6.8. REFERENCE MANUAL OF STUDIED PROCESSORS 18

7. METHODOLOGY 20

8. IMPLEMENTATION 21

9. RESULTS AND OUTCOME 23

9.1. REQUIREMENTS FOR AN EMBEDDED AIRCRAFT SYSTEMS 23
9.1.1. DETERMINISM IN EMBEDDED AIRCRAFT SYSTEMS 23
9.1.1.1. Embedded Aircraft Systems integrity 23
9.1.1.2. WCET analyzability 25
9.1.1.3. Airborne Embedded System Usage Domain 25
9.1.1.4. Robust Partitioning 26
9.1.2. CERTIFICATION OBJECTIVES FOR EMBEDDED AIRCRAFT SYSTEMS 27
9.1.2.1. Intended Function 28

MULCORS

EASA

 Thales Avionics page 4 Réf. CCC/12/006898 – rev. 07

 BSP or Board Support Package 29 9.1.2.1..1
 Hypervisor 29 9.1.2.1..2
 Operating System 30 9.1.2.1..3
 Device drivers 31 9.1.2.1..4

9.1.2.2. Safety Objectives 31
9.1.2.3. Foreseeable Conditions 32
9.2. PROCESSORS SELECTION 33
9.2.1. STRATEGIC SELECTION CRITERIA 33
9.2.1.1. Selection criteria regarding the manufacturer situation 33
9.2.1.2. Manufacturer openness regarding design and tests information 34
9.2.2. TECHNICAL SELECTION CRITERIA 34
9.2.2.1. Focus on core architecture 34

 Instruction model 34 9.2.2.1..1
 Pipeline issues 36 9.2.2.1..2
 Virtual memory management 37 9.2.2.1..3
 Private caches and scratchpads 38 9.2.2.1..4

9.2.2.2. Focus on peripherals 39
9.2.2.3. Focus on hardware assist for debug and monitoring 40
9.3. MULTI-CORE TECHNOLOGY STATE-OF-THE-ART 41
9.3.1. SUMMARY OF TASK 1 41
9.3.2. SUMMARY OF TASK 2 41
9.3.3. BASIC ARCHITECTURE CHARACTERISTICS 42
9.3.3.1. Memory sharing architecture 43

 Unified Memory Access (UMA) 43 9.3.3.1..1
 What about caches? 44 9.3.3.1..2
 Distributed Architecture (DA) 45 9.3.3.1..3
 Architecture named “Single Address space, Distributed Memory” or SADM 46 9.3.3.1..4

9.3.4. MULTI-CORE GALAXY OVERVIEW 47
9.3.4.1. A short overview of processor roadmap 47

 Freescale Roadmap 47 9.3.4.1..1
 ARM Roadmap 49 9.3.4.1..2
 INTEL® ROADMAP 50 9.3.4.1..3

9.3.4.2. Multi-core processors manufacturers and addressed market segments 52
9.3.4.3. Academic projects around multi-core 53
9.3.4.4. Industrial collaborations 54
9.3.5. SOFTWARE SUPPORT FOR EMBEDDED AIRCRAFT SYSTEMS 54
9.3.5.1. Airborne Certified Operating System 54
9.3.5.2. Software definition / explanation 55

 Processes and Threads 55 9.3.5.2..1
 Multithreading 55 9.3.5.2..2
 Processes, kernel threads, user threads 55 9.3.5.2..3

9.3.5.3. The impact of multi-cores on Software Development 56
 Memory Management 56 9.3.5.3..1
 Mapping 57 9.3.5.3..2

9.3.6. EXAMPLES OF REPRESENTATIVE MULTI-CORE ARCHITECTURES 58
9.3.6.1. Communication and Networking Processor 58

 Freescale QorIQ™ P2020 58 9.3.6.1..1
9.3.6.1..1.1 e500 Coherency Module (ECM) and Address Map 59

 e500mc Cores 60 9.3.6.1..2
 Hypervisor 62 9.3.6.1..3

MULCORS

EASA

 Thales Avionics page 5 Réf. CCC/12/006898 – rev. 07

 Networking platform: Freescale QorIQ™ P4080 63 9.3.6.1..4
9.3.6.1..4.1 QorIQ™ Processor Interconnect 64
9.3.6.1..4.2 Peripherals 64
9.3.6.2. Low-Power Multi-core IP: ARM CORTEX®-A15 MPCore™ 65

 CORTEX®-A15 Cores 66 9.3.6.2..1
 Snoop Control Unit: First Level interconnect 66 9.3.6.2..2
 Corelink™ Network: Peripheral interconnect 67 9.3.6.2..3

9.3.6.3. Multi-core DSP: Texas Instruments TMS320C6678™ 68
 DSP Cores: C66x™ CorePac 69 9.3.6.3..1
 TMS320C66xx™ interconnect: TeraNet™ 70 9.3.6.3..2

9.3.6.4. SoC FPGA Hard Processor System: Altera Cyclone® V 71
9.4. MULTI-CORE FEATURES REGARDING CERTIFICATION 72
9.4.1. INTRODUCTION 72
9.4.2. PROCESSOR FEATURES IMPACT ON DETERMINISM 73
9.4.2.1. Summary of task 3 73
9.4.2.2. Summary of task 4 73
9.4.2.3. Interconnect 73

 Overview 73 9.4.2.3..1
 Interconnect Classification criteria 75 9.4.2.3..2
 Interconnect Usage Domain 77 9.4.2.3..3

9.4.2.3..3.1 Objective and Definition 77
9.4.2.3..3.2 Related selection criteria 79

 Interconnect features regarding multi-core processor integrity 82 9.4.2.3..4
9.4.2.3..4.1 Integrity of transactions services in the interconnect 82
9.4.2.3..4.2 Related selection criteria 83

 Interconnect features regarding Worst Case Execution Time calculus 83 9.4.2.3..5
9.4.2.3..5.1 Related selection criteria 85

 Interconnect features regarding Robust Partitioning insurance 86 9.4.2.3..6
9.4.2.3..6.1 Related selection criteria 86
9.4.2.4. Shared caches 86

 Cache Classification criteria 87 9.4.2.4..1
 Content prediction features 88 9.4.2.4..2
 Classic cache configurations 89 9.4.2.4..3

9.4.2.4..3.1 Cache partitioning 89
9.4.2.4..3.2 Cache use as SRAM 89

 Corresponding selection criteria 90 9.4.2.4..4
9.4.2.5. Cache coherency mechanisms 91

 Corresponding selection criteria 92 9.4.2.5..1
9.4.2.6. Shared services 93

 Shared Services Classification criteria 93 9.4.2.6..1
 Corresponding selection criteria 96 9.4.2.6..2

9.4.2.7. Cores 97
 Corresponding selection criteria 98 9.4.2.7..1

9.4.2.8. Peripherals 98
 Corresponding selection criteria 100 9.4.2.8..1

9.5. SOFTWARE ASPECTS 101
9.5.1. SUMMARY OF TASK 7 101
9.5.2. SUMMARY OF TASK 8 101
9.5.3. AIRBORNE SOFTWARE DEPLOYMENT ON A MULTI-CORE PLATFORM 101
9.5.3.1. Airborne Software execution on several cores 101

MULCORS

EASA

 Thales Avionics page 6 Réf. CCC/12/006898 – rev. 07

 Multitasks scheduling features 102 9.5.3.1..1
 Airborne Software migration from single-core to multi-core platforms 103 9.5.3.1..2
 Partitioned system features 104 9.5.3.1..3

9.5.3.1..3.1 Components evolution to take benefit of multi-core platforms 104
9.5.3.1..3.2 Deployment of partitions 105
9.5.3.1..3.3 Symmetrical Multi-processing 105
9.5.3.1..3.4 Asymmetrical Multi-processing 106
9.5.3.1..3.5 AMP-SMP-BMP selection 106
9.5.3.1..3.6 Others deployment schemes 108
9.5.3.2. Airborne Equipment software features 109

 Architectural concerns 109 9.5.3.2..1
9.5.3.2..1.1 Symmetrical Multi Processing 109
9.5.3.2..1.2 Asymmetrical Multi Processing 110
9.5.4. MITIGATION MEANS 111
9.5.4.1. Summary of task 5 111
9.5.4.2. Mitigation Means Analysis 111
9.5.4.3. Time jitter ratio to total execution time 112
9.5.4.4. Airborne Software WCET evaluation 113
9.5.4.5. Monitoring during real-time execution 113
9.5.4.6. Airborne Software robustness 113
9.6. FAILURE MITIGATION MEANS 114
9.6.1. SUMMARY OF TASK 10 114
9.6.2. MITIGATION MEANS 114
9.7. COTS RELATED FEATURES 115
9.7.1. SUMMARY OF TASK 11 115
9.7.2. COTS RELATED FEATURES ANALYSIS 115
9.7.2.1. Electro-migration 116
9.7.2.2. Single Event Effects 116
9.8. METHOD AND TOOLS 118
9.8.1. SUMMARY OF TASK 9 118
9.8.2. METHODS AND TOOLS ANALYSIS 118
9.9. EASA GUIDELINE FOR MULTI-CORE PLATFORMS 121
9.9.1. SUMMARY OF TASK 6 121
9.9.2. PROPOSED GUIDELINE 121

10. OUTREACH 123

11. CONCLUSIONS 124

11.1. CONCLUSIONS WITH RESPECT TO THE REDUCTION OF COMPLEXITY 124
11.2. MULTI-CORE PROCESSOR USAGE DOMAIN RELATED CONCLUSIONS 125
11.3. SIGNIFICANT FEATURES RELATED CONCLUSIONS 125
11.4. CONCLUSIONS ON ROBUST PARTITIONING 125
11.5. CONCLUSIONS ON SUGGESTED MODIFICATION TO EASA GUIDANCE 126
11.5.1. ROUTES TO COMPLIANCE 126
11.5.2. ADVANCED GUIDANCE 126

12. RECOMMENDATIONS 127

MULCORS

EASA

 Thales Avionics page 7 Réf. CCC/12/006898 – rev. 07

12.1. PURPOSE 127
12.2. PROCESSOR SELECTION GUIDE 129
12.3. USAGE DOMAIN 132
12.4. CACHE COHERENCY 133
12.5. OPERATING SYSTEM & TASKS ALLOCATIONS 134
12.6. SHARED SERVICES 134
12.7. CORES 135
12.8. PERIPHERALS 135
12.9. FAILURE MITIGATION 135

13. REFERENCES 136

14. APPENDIXES 138

14.1. REVIEW OF EXISTING EASA GUIDANCE IN EASA CM SWCEH-001 ISS. 1 REV. 1 138
14.1.1. REVIEW OF EASA CM SWCEH-001 138
14.1.2. MULTI-CORE ASPECTS ALREADY AVAILABLE IN EASA CM SWCEH-001 ISS. 1 REV. 1 142
14.1.3. STRUCTURING ACTIVITIES 142
14.2. EXAMPLE OF PROCESSOR CLASSIFICATION 145

MULCORS

EASA

 Thales Avionics page 8 Réf. CCC/12/006898 – rev. 07

1. DISCLAIMER

This study has been carried out for the European Aviation Safety Agency by an external organization and

expresses the opinion of the organization undertaking the study. It is provided for information purposes

only and the views expressed in the study have not been adopted, endorsed or in any way approved by the

European Aviation Safety Agency. Consequently it should not be relied upon as a statement, as any form

of warranty, representation, undertaking, contractual, or other commitment binding in law upon the

European Aviation Safety Agency.

Ownership of all copyright and other intellectual property rights in this material including any

documentation, data and technical information, remains vested to the European Aviation Safety Agency.

None of the materials provided may be used, reproduced or transmitted, in any form or by any means,

electronic or mechanical, including recording or the use of any information storage and retrieval system,

without express written consent from the European Aviation Safety Agency. All logo, copyrights,

trademarks, and registered trademarks that may be contained within are the property of their respective

owners.

Persons wishing to reproduce in whole or in part the contents of this study are invited to submit a written

request to the following address:

European Aviation Safety Agency (EASA)

Safety Analysis and Research Department

Research Project Manager

Ottoplatz 1

D-50679 Cologne

Germany

MULCORS

EASA

 Thales Avionics page 9 Réf. CCC/12/006898 – rev. 07

2. ACKNOWLEDGEMENTS

This report concludes the MULCORS project contracted with EASA. It provides the main outputs,

recommendations and conclusions per EASA Specifications attached to the Invitation to Tender

EASA.2011.OP.30.

Project MULCORS - The Use of MULticore proCessORS in Airborne Systems was organized into a set of

tasks conducted with reference to the required subject and scope of the contract.

Interim reports were produced at dedicated milestones along with the execution of tasks whose results are

further described in the Results and Outcome section 8 of the present report.

Thales would like to thank EASA, both for funding this study project and for its contribution in the reviews

of the tasks performed, and its feedback on interim provided reports.

Thales acknowledges the contribution of Xavier Jean, PHD engineer that provided a high level of expertise

in the technical matters that were necessary to support such a study.

Finally, the authors of this report recognize the quality of the input from all skilled technical experts and

experienced key personnel that were allocated to the project.

MULCORS

EASA

 Thales Avionics page 10 Réf. CCC/12/006898 – rev. 07

3. EXECUTIVE SUMMARY

This section summarizes the overall content of this report as a result of MULCORS study.

3.1. AIMS / OBJECTIVES

MULCORS aims and objectives are

 To provide a survey of Multi-core processors market availability

 To define multi-core processors assessment & selection criteria

 To perform investigations on a representative multi-core processor

 To identify mitigation means, design and usage rules & limitations

 To suggest recommendations for multi-core processor introduction

 And to suggest complementary or modification to EASA guidance

3.2. OVERALL APPROACH

To cover this study, EASA and Thales have decided to cut it in 12 steps. Each step paves the road to

analyze how to introduce safely Multi-Core processor in Embedded Aircraft Systems point per point.

The approach taken in conducting this study was a "Top-Down" one, which consisted in starting with a

survey and analysis of the main specific features of a selection of COTS Multi-core Processors, then in

establishing recommendations that can be used by EASA to complement its guidance, and by applicants in

the determination of compliance of COTS Multi-core Processors with certification requirements.

This approach may be compared to another approach, i.e. more bottom-up, that would be more suited for a

developer of a computing unit implementing COTS Multi-core processors. In that context, such an

approach should start with the establishment of requirements specifications for the Airborne Electronic

Hardware (AEH), taking into account design requirements in relationship with the use of a selected COTS

Multi-core processor.

This approach helps to analyze all the stakes for Multi-core Processor introduction in Embedded Aircraft

Systems from Market evolution regarding Hardware and Software up to mitigation to be implemented for

Risk Management.

3.3. EASA EXPECTATIONS

The objective of the study was to provide EASA with sufficient data, analyses and recommendations to

enable EASA to have a better understanding of the state of the art concepts/features related to MCP
1
 and

their subsequent impact on the compliance demonstration to finally write and publish guidance material on

the subject of the use of multi-core processors in safety-critical airborne systems.

1
 MCP : Muti-Core Processor

MULCORS

EASA

 Thales Avionics page 11 Réf. CCC/12/006898 – rev. 07

3.4. FINDINGS ACHIEVEMENTS AND CONCLUSIONS

This report contains one section dedicated for recommendations to help building a guideline for COTS

multi-core processor introduction.

From Thales point of View introduction of processor multi-core in Embedded Aircraft Systems can be

considered as inevitable due to the market evolution where single core processors aims to disappear.

Avionics needs to master multi-core processor introduction in certified Embedded Aircraft Systems such as

Displays, IMA systems, Flight Control System, Breaking-Steering System, FADEC, Avionics Server, etc.

To reach this goal, Thales Avionics position is to propose recommendations to complement current EASA

guideline (ED80 / EASA Cert. Memo SWCEH-001 issue: 01, Rev. 1) on (Highly) Complex COTS with the

following additional recommendations for component selection and implementation:

 Interconnect analysis allowing defining its Domain Usage.

 Interconnect Usage Domain definition:

o This includes the Methodology to ensure the completeness and validation of the Usage

Domain which guarantees the compatibility with current Avionics constraints associated to

the envisioned usage (DAL
2
) whatever the Airborne System type.

o This is the key point where Airborne System Provider, Certification Applicant and

Certification Authorities have to agree on COTS for acceptability.

 Mechanisms to manage Interconnect Usage Domain.

 Operating System or Scheduler:

o Tasks or Processes allocation

o Needs for Hypervisor

 Cache management.

 Core management.

 Shared services at COTS device level.

.

2
 DAL : Design Assurance Level

MULCORS

EASA

 Thales Avionics page 12 Réf. CCC/12/006898 – rev. 07

4. BACKGROUND

4.1. DIGITAL EMBEDDED AIRCRAFT SYSTEMS

Embedded Aircraft Systems are composed of Airborne Software installed on Hardware elements. That

Airborne Software must fulfill the requirements for safety critical functionality on the aircraft.

Thus, the design, development, certification and operation of the software have to meet Reliability,

Availability, Maintainability and Safety (RAMS) objectives depending on their Design Assurance Level

(DAL).

Hardware (HW) and Software (SW) components have followed the evolution of technology over the last

decades, including technological transitions. Yet the confidence in RAMS of the overall system has not

been degraded. Similarly, an equivalent level of safety is expected by Thales from the use of COTS multi-

core technology.

4.2. USE OF COTS PROCESSORS IN EMBEDDED AIRCRAFT EQUIPMENT

One major technological step in the Embedded Aircraft Equipment was the introduction of Commercial

Off The Shelf (COTS) processors in avionics.

COTS processor architectures have become more and more complex from single CORE requiring external

bridge to interconnect Busses and memories (like in the PPC G3 type) up to Micro-Controllers where a

bridge has been embedded in the processor (like in the PPC G4 type) with other features such as network

(Ethernet), video, audio, bus (USB, PCI, PCIe, etc.) and other interfaces.

Use of COTS multi-core processors technology in safety-critical Airborne Software tends to be the

preferred and undisputed choice for the future generation of Airborne Embedded Systems to satisfy

processing performance requirements and weight reduction of digital electronic hardware in avionics.

Those COTS multi-core processors are classified like the current micro-controller ones as Highly Complex

COTS as they feature quite a number of highly integrated execution units and associated control

mechanisms embedded in the device.

In addition, internal architecture may not be directly accessible to the developers implementing such

devices in their design.

COTS Multi-core design data, understood as either ED-80/DO-254-usable life-cycle data, or component’s

in-house development data, is generally not available for review and remains proprietary to the component

manufacturer. Hence difficulties arise when design assurance must be shown and demonstrated.

MULCORS

EASA

 Thales Avionics page 13 Réf. CCC/12/006898 – rev. 07

4.3. USE OF MULTI-CORE IN EMBEDDED AIRCRAFT EQUIPMENT

The introduction of COTS multi-core processors in Embedded Aircraft Equipment is motivated by the

following aspects:

 Provide a long-term answer to the increasing demand of processing power for the embedded

hardware elements with an acceptable power consumption and weight (reduce environmental

footprint comparing to the current ones).

 Anticipate the mass market obsolescence for single-core processors.

o A first step can be to be able to solve single core obsolescence by the replacement of this

single-core by a multi-core with only one active core, others are disabled.

 Expected from COTS Multi-core use in Embedded Aircraft Equipment is a combination of three

factors :

o Increased performance,

 There is law for predicting the performance ratio regarding the numbers of cores

(Amdhal Law, Gustafson Law) and the number of Threads that can be executed in

parallel

o Increased integration

 Less equipment to realize the same functionality or the same amount of equipment to

host more functionality.

o Reduce environmental footprint

 Fewer embedded equipment, less power consumption, less dissipation compared to

the single core equivalent.

 Be able to “simplify” the use of a Multi-Core Processor thanks to its throughput.

o With, for example, a partitioned architecture, implementing a high DAL level Airborne

Software application on one core exchanging data with a low level Airborne Software

application implemented on an another core. Arbitration can be made to favor the High

DAL level Airborne Software application offering safety for this level.

MULCORS

EASA

 Thales Avionics page 14 Réf. CCC/12/006898 – rev. 07

5. AIMS AND OBJECTIVES

The basis for the project was to conduct a study of the multi-core processors that are currently available

and that are anticipated within the next few years, based on public information and roadmap.

The objective of the study was to provide EASA with sufficient data, analyses and recommendations to

enable EASA to write and publish guidance material on the subject of the use of multi-core processors in

safety-critical airborne systems.

The study examined different Hardware (HW) and Software (SW) architectures of multi-core processors to

determine which characteristics of these architectures would enable them to host safety-critical Airborne

Software and which have negative implications in terms of the ability of the systems to host safe, robustly

partitioned and deterministically executed Airborne Software.

We have then reduced the scope to a selection of few candidates representative of various implementations,

which were examined in detail in the study so as to highlight the significant characteristics of the group that

are new or different from those of single core processors, whether the characteristics are favorable or

unfavorable for the use of the type in safety-critical Airborne Software, and whether any mitigation

measures might be used in each case to adapt the type for use in safety-critical Airborne Software.

One purpose of MULCORS was to introduce criteria for multi-core architectures in order to ease their

evaluation by the certification authorities in a certification process.

We further distinguished two classes of evaluation criteria:

 Multi-core specific criteria that would be irrelevant in a non-multi-core context

 Complex COTS criteria that are relevant both for multi-core and non-multi-core computing

platforms.

Another objective of MULCORS was to use the EASA “Certification Memorandum for Complex

Electronic Hardware (CEH)” recommendations in regard to the multi-core technology. This analysis

should result in a proposition regarding specific recommendations linked to the multi-core context.

The study examined other aspects such as:

 Software aspects of using multi-core processors to host safety-critical Airborne Software, including

any Supervisor / Hypervisor and Operating System.

 Tools and techniques that may be used to specify the software requirements and the software design

so as to efficiently and safely execute software in parallel on multi-core processors.

 Verification and certification implications of hosting software on multi-core processors, including

measuring the Worst Case Execution Time.

MULCORS

EASA

 Thales Avionics page 15 Réf. CCC/12/006898 – rev. 07

6. LITERATURE REVIEW

6.1. AVIONIC STANDARDS

 SAE ARP 4754: Certification Considerations for Highly-Integrated or Complex Aircraft Systems

Society of Automotive Engineers (SAE), 1996.

This standard addresses problematic that deal with complex embedded systems, included but not

restricted to digital avionics systems

 RTCA DO-178B: Software Considerations in Airborne Systems and Equipment Certification.

Radio Technical Commission for Aeronautics (RTCA), 1992.

This standard deals with quality of software conception, development, test and integration.

 RTCA DO-178C: Software Considerations in Airborne Systems and Equipment Certification.

Radio Technical Commission for Aeronautics (RTCA), 2012.

This standard is an update of DO-178B

 RTCA DO-254 / EUROCAE ED-80: Design Assurance Guidance for Airborne Electronic Hardware.

Radio Technical Commission for Aeronautics (RTCA) and EURopean Organisation for Civil

Aviation Equipment (EUROCAE).

This standard deals with design quality for hardware elements.

 RTCA DO-297: Integrated Modular Avionics (IMA) Development, Guidance and Certification

Considerations.

Radio Technical Commission for Aeronautics (RTCA), 2005.

This is the latest standard for IMA systems development and exploitation. It deals with high-level

requirements, Robust Partitioning, Verification and Validation, reuse of components.

 EASA CM - SWCEH – 001, issue 1: Development Assurance of Airborne Electronic Hardware,

August 2011

This certification memorandum has been developed by EASA to highlight issues that shall be

addressed in the certification process.

http://www.easa.europa.eu/certification/docs/certification-memorandum/EASA%20CM-SWCEH-

001%20Development%20Assurance%20of%20Airborne%20Electronic%20Hardware.pdf

 EASA CS-25: Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes,

Amendment 12 – subpart F, July 2012

http://www.easa.europa.eu/agency-measures/docs/certification-specifications/CS-25/CS-

25%20Amdt%2012.pdf

http://www.easa.europa.eu/certification/docs/certification-memorandum/EASA%20CM-SWCEH-001%20Development%20Assurance%20of%20Airborne%20Electronic%20Hardware.pdf
http://www.easa.europa.eu/certification/docs/certification-memorandum/EASA%20CM-SWCEH-001%20Development%20Assurance%20of%20Airborne%20Electronic%20Hardware.pdf
http://www.easa.europa.eu/agency-measures/docs/certification-specifications/CS-25/CS-25%20Amdt%2012.pdf
http://www.easa.europa.eu/agency-measures/docs/certification-specifications/CS-25/CS-25%20Amdt%2012.pdf

MULCORS

EASA

 Thales Avionics page 16 Réf. CCC/12/006898 – rev. 07

6.2. OFFICIAL GUIDELINES

 ARINC-653 P1 revision 3: Avionics Application Software Standard Interface.

Aeronautical Radio Inc, 2010.

This guideline deals with partitions definition and scheduling, Operating System architecture and the

Application Executive interface (APEX) that is a standardized API for the embedded partitions.

 ARINC-651: Design Guidance for Integrated Modular Avionics.

Aeronautical Radio Inc, 1991.

This guideline addresses software and hardware concerns in the previous generation of IMA.

6.3. STUDIES ON PROCESSOR EVALUATION AND SELECTION

 Forsberg, H. & Karlsson, K. COTS CPU Selection Guidelines for Safety-Critical Applications

25th Digital Avionics Systems Conference, IEEE/AIAA, 2006, 1-12

http://dx.doi.org/10.1109/DASC.2006.313701

 Bob, G.; Joseph, M.; Brian, P.; Kirk, L.; Spencer, R.; Nikhil, G.; Daniel, O.; Jason, D. L.; John, S.;

Arnold, N.; Bob, M. & Dr. Rabi, M.

Handbook For The Selection And Evaluation Of Microprocessors For Airborne Systems

Federal Aviation Administration - U.S. Department of Transportation, 2011

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR_11_2.pdf

 Faubladier, F. & Rambaud, D. Soc Survey Report - Safety Implications of the use of system-on-chip

(SoC) on commercial of-the-shelf (COTS) devices in airborne critical applications

EASA – study ref. EASA.2008.OP.04, 2008

http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-

aeroplanes/Final_Report_EASA.2008_1.pdf

 Kinnan, L.M. Use of multi-core processors in avionics systems and its potential impact on

implementation and certification.

28th Digital Avionics Systems Conference, IEEE/AIAA, 2009, pp. 1.E.4.1 – 1.E.4-6

http://dx.doi.org/10.1109/DASC.2009.5347560

6.4. STUDIES ON ROBUST PARTITIONING

 Rushby John, Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance.

1999

FAA-AR-99/58, Office of Aviation Research, Washington DC

http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

http://dx.doi.org/10.1109/DASC.2006.313701
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR_11_2.pdf
http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/Final_Report_EASA.2008_1.pdf
http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/Final_Report_EASA.2008_1.pdf
http://dx.doi.org/10.1109/DASC.2009.5347560
http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

MULCORS

EASA

 Thales Avionics page 17 Réf. CCC/12/006898 – rev. 07

 Wilding Matthew M., David S. Hardin, David A. Greve, Invariant Performance: A statement of Task

Isolation Useful for Embedded Application Integration. 1999

Proceedings of the conference on Dependable Computing for Critical Applications

http://dl.acm.org/citation.cfm?id=555298.789914

 Littlefield-Lawwill, J. & Kinnan, L., System considerations for robust time and space partitioning in

Integrated Modular Avionics. 2008

27th Digital Avionics Systems Conference, IEEE/AIAA, 2008

http://dx.doi.org/10.1109/DASC.2008.4702751

6.5. STUDIES ON WCET CALCULUS

 Wilhelm, R.; Engblom, J.; Ermedahl, A.; Holsti, N.; Thesing, S.; Whalley, D.; Bernat, G.; Ferdinand,

C.; Heckmann, R.; Mitra, T.; Mueller, F.; Puaut, I.; Puschner, P.; Staschulat, J. & Stenström, P.

The worst-case execution-time problem overview of methods and survey of tools, 2008

ACM Trans. Embed. Comput. Syst., ACM, 2008, 7, 36:1-36:53

http://www.cs.fsu.edu/~whalley/papers/tecs07.pdf

 Hardy, D. Analyse pire cas pour processeur multi-cœurs disposant de caches partagés (link in

French) , 2010

PhD Thesis, Université Rennes 1

http://tel.archives-ouvertes.fr/docs/00/55/70/58/PDF/Hardy20101209_phd.pdf

 Nowotsch, J. & Paulitsch, M., Leveraging Multi-core Computing Architectures in Avionics, 2012

European Dependable Computing Conference, IEEE Computer Society, 2012, 0, 132-143

http://doi.ieeecomputersociety.org/10.1109/EDCC.2012.27

 Pellizzoni, R. & Caccamo, M. Impact of Peripheral-Processor Interference on WCET Analysis of

Real-Time Embedded Systems, 2010

IEEE Trans. Comput., IEEE Computer Society, 2010, 59, 400-415

http://dx.doi.org/10.1109/TC.2009.156

 Moscibroda, T. & Mutlu, O. Memory performance attacks: denial of memory service in multi-core

systems, 2007

Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium, USENIX

Association, 2007, 18:1-18:18

http://dl.acm.org/citation.cfm?id=1362903.1362921

http://dl.acm.org/citation.cfm?id=555298.789914
http://dx.doi.org/10.1109/DASC.2008.4702751
http://www.cs.fsu.edu/~whalley/papers/tecs07.pdf
http://tel.archives-ouvertes.fr/docs/00/55/70/58/PDF/Hardy20101209_phd.pdf
http://doi.ieeecomputersociety.org/10.1109/EDCC.2012.27
http://dx.doi.org/10.1109/TC.2009.156
http://dl.acm.org/citation.cfm?id=1362903.1362921

MULCORS

EASA

 Thales Avionics page 18 Réf. CCC/12/006898 – rev. 07

6.6. STUDIES ON MULTICORE PROCESSORS SCHEDULING

 Davis, R. & Burns, A. A Survey of Hard Real-Time Scheduling Algorithms and Schedulability

Analysis Techniques for Multiprocessor Systems, 2009

ACM Comput. Surv., ACM, 2011, 43, 35:1-35:44

http://doi.acm.org/10.1145/1978802.1978814

6.7. STUDIES ON HYPERVISORS AND OPERATING SYSTEMS

 Krodel, J. & Romanski, G. Handbook for Real-Time Operating Systems Integration and Component

Integration Considerations in Integrated Modular Avionics Systems, 2008

Federal Aviation Administration - U.S. Department of Transportation, 2008

http://www.tc.faa.gov/its/worldpac/techrpt/ar0748.pdf

 Gu, Z. & Zhao, Q. A State-of-the-Art Survey on Real-Time Issues in Embedded Systems

Virtualization, 2012

Journal of Software Engineering and Applications, 2012, 05, 277 – 291

http://dx.doi.org/10.4236/jsea.2012.54033

6.8. REFERENCE MANUAL OF STUDIED PROCESSORS

 Freescale Embedded Hypervisor Software User Manual

http://www.freescale.com/infocenter/index.jsp?topic=%2FQORIQSDK%2F1331445.html

 Freescale Semiconductor Inc, P4080 QorIQ Integrated Multicore Communication Processor Family

Reference Manual, 01/2012 - Revision. 1

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080

(a free account must be created to download the reference manual)

 Freescale Semiconductor Inc, EREF 2.0: A Programmer’s Reference Manual for Freescale Power

Architecture® Processors, 09/2011 – Revision 0

http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf

 Freescale Semiconductor Inc, e500mc Core Reference Manual, 03/2012 – Revision 1

http://cache.freescale.com/files/32bit/doc/ref_manual/E500MCRM.pdf

 ARM, Cortex™-A15 MPCore™ Technical Reference Manual Revision: r3p2, 07/2012

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438g/DDI0438G_cortex_a15_r3p2_trm.pdf

 ARM, CoreLink™ CCI-400 Cache Coherent Interconnect Technical Reference Manual, 11/2012

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470g/DDI0470G_cci400_r1p1_trm.pdf

http://doi.acm.org/10.1145/1978802.1978814
http://www.tc.faa.gov/its/worldpac/techrpt/ar0748.pdf
http://dx.doi.org/10.4236/jsea.2012.54033
http://www.freescale.com/infocenter/index.jsp?topic=%2FQORIQSDK%2F1331445.html
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/E500MCRM.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438g/DDI0438G_cortex_a15_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470g/DDI0470G_cci400_r1p1_trm.pdf

MULCORS

EASA

 Thales Avionics page 19 Réf. CCC/12/006898 – rev. 07

 ARM, ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition, 2012

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html

(an account must be created to access this document)

 Texas Instruments, TMS320C6678™ - Multicore Fixed and Floating-Point Digital Signal Processor,

02/2012

http://www.ti.com/lit/ds/sprs691c/sprs691c.pdf

 Texas Instruments, TMS320C66x™ DSP CorePac User Guide, 07/2011

http://www.ti.com/lit/ug/sprugw0b/sprugw0b.pdf

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://www.ti.com/lit/ds/sprs691c/sprs691c.pdf
http://www.ti.com/lit/ug/sprugw0b/sprugw0b.pdf

MULCORS

EASA

 Thales Avionics page 20 Réf. CCC/12/006898 – rev. 07

7. METHODOLOGY

Besides the organization in tasks described in section 8 below, this study was organized as follows:

1. A preliminary phase which was divided in two part

o The first part where we have defined some requirements applicable to multi-core computing

platforms in an avionic context. Those requirements depend on the different kinds of digital

systems and their level of criticality.

o The second part that deals with processors selection for avionic usage out of the field of

multicore architecture. Two kinds of selection criteria were explored: strategic criteria that

deal with manufacturer selection rather than the processor itself, and technical criteria that

focus on specific points of the architecture. Those criteria are still valid in a multicore

context.

2. A first phase was prospective: we provided a snapshot of the multi-core technology and basic non-

technical criteria for processors early selection. Then we presented some representative multi-core

computing platforms in a more detailed description.

3. A second phase of the study refined multi-core features on the hardware and software aspects. We

illustrate those features on two selected computing platforms. We provided a set of guidelines and

technical selection criteria.

4. A third phase where we deduced from the previous phases additional recommendations for

certification procedures.

MULCORS

EASA

 Thales Avionics page 21 Réf. CCC/12/006898 – rev. 07

8. IMPLEMENTATION

The work relevant for this study has been implemented, based on different activities organized in tasks, and

deployed in a logical manner. A summary of those tasks and their arrangement is provided below to allow

a better and easier reference of the results and outcomes exposed in section 8 of this present report.

 Task 1. Provide a survey of Multi-core processors market availability

 Task 2. Characterize essential multi-core processors types features

 Task 3. Define multi-core processors assessment & selection criteria

 Task 4. Perform investigations on a representative multi-core processor

 Task 5. Identify mitigation means, design and usage rules & limitations

 Task 6. Suggest complementary or modification to EASA guidance

 Task 7. Investigate operating system software execution related aspects

 Task 8. Identify methods, tools, languages and Operating Systems for design

 Task 9. Identify methods, tools, means and instrumentation for testing

 Task 10. Examine failure detection and recovery mechanisms features

 Task 11. Analyze COTS-related features (Errata sheets, SEU, Service experience)

 Task 12. Summary conclusion, main results & recommendations and final report

The task flow execution followed the logic in Figure 1 above with the exception of task 7 that needed to be

anticipated earlier than scheduled in the original plan.

A lesson learned from such an organization for a similar project is to limit the breakdown into tasks to less

than a few (around 6 tasks) in order to avoid dispersion of issues over too many packages.

Monthly progress reports were provided and presented to EASA. This led to few amendments to the

original content both programmatic and technical. Also worth to mention is that interim reports were

provided and amended along with each monthly progress reports. This was useful to help reorient the

research to actual EASA needs and directions.

A task summary is provided for reference along with the details discussion in the Results and Outcome

section 8.

MULCORS

EASA

 Thales Avionics page 22 Réf. CCC/12/006898 – rev. 07

Architecture – Characteristics

Drawback – Limitations

Task1

Task2

Task3

Task4

Software Architecture – Issues

Task8

Task7

Task9

Failure Mitigation –

Work around

Task5

Task10

Task11

Support for Guidance –

Evolutions – Recommendations

Task6

Task12

All

Architecture – Characteristics

Drawback – Limitations

Task1

Task2

Task3

Task4

Architecture – Characteristics

Drawback – Limitations

Task1Task1

Task2Task2

Task3Task3

Task4Task4

Software Architecture – Issues

Task8

Task7

Task9

Software Architecture – IssuesSoftware Architecture – Issues

Task8Task8

Task7Task7

Task9Task9

Failure Mitigation –

Work around

Task5

Task10

Task11

Failure Mitigation –

Work around

Task5Task5

Task10Task10

Task11Task11

Support for Guidance –

Evolutions – Recommendations

Task6

Task12

Support for Guidance –

Evolutions – Recommendations

Support for Guidance –

Evolutions – Recommendations

Task6Task6

Task12Task12

AllAll

Figure 1: Task Work Flow

MULCORS

EASA

 Thales Avionics page 23 Réf. CCC/12/006898 – rev. 07

9. RESULTS AND OUTCOME

9.1. REQUIREMENTS FOR AN EMBEDDED AIRCRAFT SYSTEMS

9.1.1. Determinism in Embedded Aircraft Systems

Determinism is an abstract notion that usually references several high level requirements; part of it is

described in the DO-297 as “The ability to produce a predictable outcome generally based on the preceding

operations, the outcome occurs in a specified period of time with some degree of repeatability”.

Depending on the context, its embodiment may vary. Yet in a general case, we can say that a system is

deterministic as soon as its behavior is ruled by a set of identified laws. Those laws have to be compatible

with certification objectives.

For instance, a device whose response time follows a Gaussian law where means and variance are defined

may not comply with the usual requirements, such as a finite response time.

In this report, we state that an Embedded Aircraft System is deterministic if it fulfills the following

definitions for “Embedded Aircraft System Determinism”:

 It is possible to ensure the Execution Integrity of its Airborne Software. That means correct

Airborne Software will be correctly executed in a nominal situation, and the Embedded Aircraft

System state will be predictable in non-nominal situations (internal faults). It does not cover the

case of faulty airborne software.

 It is possible to perform a WCET analysis (Worst Case Execution Time) of the embedded software

(Airborne Software and Embedded Aircraft System software). Timing information on the

Embedded Aircraft System behavior (e.g. memory access worst case response time) may be

necessary.

 When the Embedded Aircraft System provider has no visibility into, or limited constraints enforced

towards the embedded Airborne Software(s), he shall define a Platform Usage Domain that details

restrictions on the Airborne Software development.

 When the Embedded Aircraft System is destined to host a partitioned system, such as in IMA
3
, the

Embedded Aircraft System provider shall also ensure Robust Partitioning between the hosted

partitions.

9.1.1.1. Embedded Aircraft Systems integrity

To ensure the execution integrity of embedded software, the Embedded Aircraft System provider must

demonstrate that the Embedded Aircraft System mode during non-faulty software execution remains

nominal or degraded into an acceptable state.

3
 IMA : Integrated Modular Avionic

MULCORS

EASA

 Thales Avionics page 24 Réf. CCC/12/006898 – rev. 07

To obtain this guarantee with an adequate level of confidence (according to the Design Assurance Level),

the Embedded Aircraft System provider must accumulate sufficient knowledge on the processor’s internal

mechanisms.

Such knowledge can be obtained through datasheets, reference manuals, under dedicated NDA
4
,

Communications, White Papers, Application notes, Errata sheets, laboratory test campaigns, etc.

The growing complexity of COTS processor architecture makes a fine grain description of all internal

features not accessible for Human, Technical and IP
5
 reasons.

Thus the properties of some features can be partially masked as long as the COTS processor manufacturer

is able to provide guarantees on their observable behavior.

The main difficulties in ensuring Embedded Aircraft System integrity deal with the determination of its

behavior upon the occurrence of internal faults and failures. Therefore, depending on the DAL (Design

Assurance Level), a more or less accurate model of faults has to be defined. Identified faults and failures

shall be mitigated or confined inside the Embedded Aircraft System using dedicated Hardware and/or

Software mechanisms.

As detailed in part 9.4.2.3..4, Embedded Aircraft System integrity in multi-core platforms is closely linked

to a correct transaction service in the interconnect. Here “correct” means that there is neither corruption nor

any silent loss of transactions.

Note: The behavior of the interconnect between cores, memory and shared resources has to be known by

design, by experimental test or by other means and present as a proof to reach acceptance of this

component.

Even if cores and peripherals architecture have been inherited from an existing single-core processor, the

current multi-core generation has introduced an important technological step mainly linked to the

interconnect design.

Note: in most multi-core architectures, from Dual Core like in the P2020 (from Freescale), up to an octo-

core like in the P4080 (from Freescale) or a quad-core like in the ARM_CORTEX®_A15, the interconnect

is the key point where all the accesses are performed. A chapter is dedicated to Interconnect Management.

Indeed, the interconnect has been built to sustain a higher bandwidth in order to serve efficiently all cores.

They enable a high level of pipelining and parallelism in transaction services.

This growing complexity makes the set of all interconnect states highly difficult to determine and analyze -

even with full information on the design (full information is not available even under dedicated NDA

linked to manufacturer IP Policy).

4
 NDA : Non Disclosure Agreement

5
 IP : Intellectual Property

MULCORS

EASA

 Thales Avionics page 25 Réf. CCC/12/006898 – rev. 07

Thus, it may be difficult to obtain guarantees of correct transaction services in a general case. There are

several approaches aimed at preventing inter-core conflicts with dedicated mechanisms, or limiting the

interconnect load in order to remain in a “safe” mode. We plan to describe some approaches in the

Interconnect Management Chapter.

9.1.1.2. WCET analyzability

Worst Case Execution Time analyses aim at determining an upper bound for a piece of software’s

execution time. Usually, the result of a WCET analysis is an upper approximation of the exact WCET

which is nearly impossible to determine for real life Software.

Simple architectures allow WCET determination using static analysis techniques using an execution model

of the Airborne Embedded System. That means the analyzed software is not executed. Yet on complex

COTS processors architectures, it is not possible to determine an accurate enough model. Today, an

alternative method is used. A worst case scenario is defined from an analysis performed on the Airborne

Software. The execution time is measured under this scenario, and is further corrected with parameters

taking into account variable jitters and variability in the duration Airborne Embedded System operations.

When the Airborne Embedded System provider has no visibility into the deployed Airborne Software - for

instance in an IMA -, he shall determine and provide such parameters to the Airborne Software suppliers

and eventually to the Module Integrator.

The lack of information on the processor behavior may lead to pessimistic estimation of those parameters

and degrade the approximation of the WCET.

For instance uncertainty on the cache content must lead to consideration of cache miss situations in the

WCET analysis.

As detailed in part 9.4.2.3..5, the use of multi-core processors in Embedded Aircraft Systems worsens the

WCET analyses. Indeed, the execution time of software on one core depends on software executed on the

other cores because of potential inter-core conflicts. Moreover, it may be difficult to determine an upper

bound on their impact whatever the concurrent software.

9.1.1.3. Airborne Embedded System Usage Domain

When the Airborne Embedded System provider has little or no visibility into the deployed Airborne

Software, he has to define what we call an “Airborne Embedded System Usage Domain” and provide it to

the Airborne Software suppliers.

This Airborne Embedded System Usage Domain details usage limitations that shall be taken into account

during Airborne Software development and execution.

MULCORS

EASA

 Thales Avionics page 26 Réf. CCC/12/006898 – rev. 07

Respecting the usage domain is a mandatory and key requirement. Dedicated tools may be used to

automatically perform checks on the usage domain aspect. Moreover, protection mechanisms can be

enforced to prevent usage domain violations that impact robust partitioning.

For instance, assembly instructions can be forbidden when their use impacts the integrity of the Airborne

Embedded System. Various protection means can be highlighted:

 A privilege level restriction, which blocks the execution of the instruction

 A processor configuration that disables this instruction

 A mandatory integration test that checks the absence of such instructions

 A trusted piece of software that checks at runtime the absence of such instructions

Yet it shall be proven that in spite of such protections, no failure mode can lead to the execution of a

forbidden instruction.

In the case of multi-Airborne Software systems, the Airborne Embedded Equipment usage domain is

divided into two categories:

 Some restrictions deal with Airborne Software development and are destined for the Airborne

Software Suppliers.

 Other limitations address the integration of Airborne Software and have to be handled by the

Module Integrator.

The use of multi-core processors is likely to entail changes in the Airborne Embedded System usage

domains. Indeed, the presence of true parallelism between pieces of software (intra and/or inter-partitions

in partitioned systems) adds new parameters that rule software deployment on the different cores.

We can illustrate examples of what could be these rules depending on the processor, the selected Operating

System, the hypervisor (when required);

 Inside an Airborne Software installation, multiple critical sections cannot be accessed in parallel by

different cores. Indeed, this situation might lead to deadlocks.

 Execution of processes inside a multi-core partition will be pre-allocated on the concerned cores

(rather than dynamically allocated by the scheduler).

 In case determinism and/or robust partitioning cannot be absolutely demonstrated, it could be stated

that a DAL-A partition is not allowed to be executed in parallel with other partitions

Note: In a low complex multi-core processor for example in a Dual-Core processor, this Usage Domain

can be more easily demonstrated if Airborne Software is known and managed to match with safety

requirements. When the Airborne Software is unknown, the Airborne Embedded Equipment usage Domain

has to be defined as described above.

9.1.1.4. Robust Partitioning

Robust Partitioning is defined in various formulations in ARP4754, DO 297, ARINC 651 and ARINC 653.

This is a property of fault containment. The reference study (Rushby, 1999) on robust partitioning was

done by John Rushby for the FAA in 2000.

MULCORS

EASA

 Thales Avionics page 27 Réf. CCC/12/006898 – rev. 07

Robust partitioning is a mandatory requirement for partitioned Airborne Embedded Systems:

The reference definition for robust partitioning is named the Gold Standard:

“A partitioned system should provide fault containment equivalent to an idealized system in which each

partition is allocated an independent processor and associated peripheral and all inter-partition

communications are carried on dedicated lines”

Yet this general definition requires an accurate model of faults for Airborne Software. To the best of our

knowledge, no direct proof of robust partitioning has been performed today. In practice, it is preferred the

following stronger property, named the Alternative Gold Standard (introduced by David Hardin, Dave

Greve and Matt Wilding):

“The behavior and performance of software in one partition must be unaffected by software in other

partitions”

In IMA systems, an ARINC 653 Time and Space partitioning implementation ensures the Alternative Gold

Standard.

Usually, robust partitioning is ensured through an analysis of interference channels. In multi-core systems,

the possible presence of inter-core conflicts may introduce new channels. Two sub-problems occur:

 Is it possible to get rid of those channels?

 If no, will interference actually occur through those channels?

This problem is refined in part 9.4.2.3..6.

We have to notice that the property of Robust partitioning is not confined to IMA systems, as we have to

deal with such requirements even in the first step of multi-core processor architectures like in a dual-core

one or when Airborne Software applications of different DALs are executed by the different cores.

Robust partitioning can be ensured

 By a hardware mechanism if this mechanism exists in the processor, if it is described and accessible

under dedicated privilege (Supervisor or Hypervisor mode),

 By the Operating System allocating priority to the Airborne Software with the highest level of DAL

(DAL-A for example) when Airborne Software of different DAL levels is executed in the Airborne

Embedded System.

 Or directly by the Airborne Software at Airborne Embedded System level. At this level, it can be

done only if we can master the temporal execution of each Airborne Software application and solve

the conflicts at this level (threads of processes allocation and description).

9.1.2. Certification objectives for Embedded Aircraft Systems

When taking into account the general certification requirements, the Airborne Embedded System provider

must address the following objectives:

MULCORS

EASA

 Thales Avionics page 28 Réf. CCC/12/006898 – rev. 07

PROCESSOR

ARM FREESCALE IBM INTEL TEXAS

PROCESSOR BSP

ARM

BSP

FREESCALE

BSP

IBM

BSP

INTEL

BSP

TEXAS

BSP

HYPERVISOR

ARM

based

FREESCALE

based

IBM

based

INTEL

based

TEXAS

Based

Operating SYSTEM

VxWorks PikeOS LynxOS Integrity MACS2

DRIVERS

Network
SOC

Peripherals

Memory /

Flash

I/O

Drivers
USB / PCI

AIRBORNE SOFTWARE

Time Critical

Application
Utilities Avionics Server IFE

 Ensure Intended Function,

 Meet Safety Objectives,

 Sustain Foreseeable Conditions.

Note that this chapter does not replace applicable requirements such as S/HW compliance with

XX.1301/XX.1309, i.e. development assurance as defined by ED-12B/DO-178B and ED-80/DO-254.

This chapter and this report focus on multi-core processor where ED-12B/DO-178B for embedded micro-

code and/or ED-80/DO-254 for processor Hardware development are not used by processor manufacturer.

At equipment level and/or board level, Airborne Embedded System providers and/or Airborne Software

providers have to be compliant with ED-80/DO-254 and ED-12/DO-178 (B or C) and implement

mitigation to demonstrate the global compliance with ED-80/DO-254 and/or DO-178 with such

components as processors.

9.1.2.1. Intended Function

The functionalities of a processor,

whether it is COTS Mono-Core

or Multi-Core, are always

exercised using:

 First a layer of Hardware -

Software interface known

as the processor BSP
6
,

 When required, a

Hypervisor layer

 Then the Operating

System itself,

 All the required drivers

and Processor drivers

 And the last one the

Airborne Software layer

(which is out of the scope of this purpose).

6
 BSP : Board Support Package

MULCORS

EASA

 Thales Avionics page 29 Réf. CCC/12/006898 – rev. 07

 BSP or Board Support Package 9.1.2.1..1

A software layer that adapts the Operating System to the dedicated processors. This layer gives accesses to

the internal resources of the multi-core component but the management of these resources has to be done

by the Hypervisor when required or by the Operating System.

BSP development has to fulfill ED-12/DO-178 (B or C) requirements.

BSP_Remark1: When a Hypervisor is not required, privileged access has to be given in Supervisor

or Hypervisor mode to the Operating System to allow programming of shared resources like

hardware accelerators, arbiters, in order to fulfill safety requirements such as determinism.

BSP_Remark2: if two Operating Systems are used, for example, on a dual-core processor, one of

these two Operating Systems has to be set in the Supervisor or Hypervisor mode to have the

privilege to access to programming of shared resources, the second one has to be set respectively in

User or Supervisor mode.

 Hypervisor 9.1.2.1..2

A software layer that acts as a Virtual Machine Monitor. This software layer emulates virtual environments

in which several Operating Systems may be executed simultaneously. In such a configuration, its use may

help mastering the processor behavior regarding dedicated requirements like determinism or conflict

management in shared resources accesses.

We consider, in this report that the Hypervisor level is realize in a SMP mode managing all cores.

 RGL n°1

When an Hypervisor is required to manage the behavior of the interconnect, the development of such a

Hypervisor shall fulfill ED-12/DO-178 (B or C) requirements at the corresponding Design Assurance

Level, at least the most stringent Airborne Software.

HYP_Remark1: we see that there is a relationship between the intended function and objectives

with respect to safety and foreseeable conditions, as, at least for functional operation, the influence

of external Airborne Software input authority is limited by such a hypervisor, while the latter is

providing the deterministic behavior, performance characteristics and integrity necessary to the end-

user Airborne Software.

The use of a Hypervisor layer is not mandatory, for example in a dual core processor, where the behavior

of this dual-core processor can be managed directly at the Airborne Software level.

Let us detail this:

 We are able to master the complete behavior of Airborne Software application(s) running on the

processor even in SMP mode (during any one period of time, the multi-core processor is allocated

MULCORS

EASA

 Thales Avionics page 30 Réf. CCC/12/006898 – rev. 07

to only one Airborne Software application running and the Operating System realizes the tasks or

processes allocations on cores) or in AMP mode (during one period of time, each core runs a

dedicated Airborne Software application, which means that we have one Operating System per

core),

 We can demonstrate that there are no shared resource access conflicts by analyzing the execution of

the Airborne Software and/or processes or threads. Or if there are conflicts, they are managed by

arbitration using priorities based on the DAL level of the Airborne Software: if two DAL-A

Airborne Software applications have to be executed at the same time, prioritization is not the

solution the only solution remains the hypervisor that manages the Interconnect Usage Domain

and provides safe arbitration between the Airborne Software applications.

HYP_Remark2: if a Hypervisor is not required, the Airborne Software applications have to be

clearly described to demonstrate the absence of conflicts (between Airborne Software in AMP or

between threads or processes in SMP) or that conflicts are managed using, for example, Airborne

Software DAL level for managing access priorities to shared resources.

 Operating System 9.1.2.1..3

Software that manages computer Hardware resources and provides common services for Airborne

Software. The operating system is a vital component of the system software in a computer system.

Airborne Software programs require an operating system to function.

We can notice various types of Operating System such as:

 Real-time

o A multitasking operating system that aims at executing real-time Airborne Software. Real-

time operating systems often use specialized scheduling algorithms so that they can achieve

a deterministic nature of behavior. The main objective of real-time operating systems is their

quick and predictable response to events. They have an event-driven or time-sharing design

that switches between tasks based on their priorities or external events while time-sharing

operating systems switch tasks based on clock interrupts.

 Multi-user

o A multi-user operating system allows multiple users to access a computer system at the

same time. Note that Single-user operating systems have only one user but may allow

multiple programs to run at the same time.

 Multi-tasking vs. single-tasking

o A multi-tasking operating system allows more than one program to be running at a time; an

ARINC653 Operating System is a Multi-tasking one. A single-tasking system has only one

running program. Multi-tasking can be of two types: pre-emptive or co-operative. In pre-

emptive multitasking, the operating system slices the CPU time and dedicates one slot to

each of the programs.

 Distributed

o A distributed operating system manages a group of independent cores and makes them

appear to be a single processor..

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Operating_system_services
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/System_software

MULCORS

EASA

 Thales Avionics page 31 Réf. CCC/12/006898 – rev. 07

 Embedded

o They are designed to operate on small machines like PDA
7
’s with less autonomy. They are

able to operate with a limited number of resources. They are very compact and extremely

efficient by design.

The development of an Operating System has to fulfill ED-12/DO-178 (B or C) requirements and when

required, for IMA for example, ARINC653 requirements as well.

 Device drivers 9.1.2.1..4

Pieces of software developed to mask the complexity of interactions with Hardware devices. The device

driver constitutes an interface for communicating with the device, through the specific computer bus or

communications subsystem that the hardware is connected to. A device driver is a specialized hardware-

dependent computer program which is also operating system specific that enables another program,

typically an operating system or Airborne Software package or computer program running under the

operating system kernel, to interact transparently with a hardware device, and usually provides the requisite

interrupt handling necessary for any necessary asynchronous time-dependent hardware interfacing needs.

The development of Device drivers has to fulfill ED-12/DO-178 (B or C) requirements

9.1.2.2. Safety Objectives

A Complex COTS FMEA
8
 and, a fortiori a COTS Multi-core FMEA, is difficult to achieve, due in part to

the fact that the detailed internal architecture is not known and not accessible by the hardware designer

implementing the device, and also because quantitative data on failure modes and failure rates are not

generally available to the adequate level of detail.

A more qualitative FFPA
9
 approach is generally achievable at least to a certain level of description. In

addition, some new approaches could be devised with reference to ED-80/DO-254 Appendix B for an

Architecture mitigation combined with a Safety-specific analysis, combining both identification of

potentially hidden failures, safety effects aspects, and software or system architecture mitigation.

This latter approach might be the most pertinent for COTS Multi-Core processors as such devices must be

considered together with their embedded architecture, including software drivers (e.g. hypervisors or

operating systems) and hardware mechanisms (e.g. monitoring or protections)..

Note that the design and development of boards or equipment have to fulfill ED-80/DO-254 requirements.

SAF_Remark1: if an FMEA and/or FFPA for a single or a multi-core processor is not achievable at

processor level, mitigation has to be provided by the equipment provider at board level where this

processor is used. The equipment provider has to demonstrate to the authorities that Safety requirements

are respected.

7
 PDA : Personal Digital Assistant

8
FMEA : Failure Mode & Effects Analysis

9
FFPA : Functional Failure Path Analysis

MULCORS

EASA

 Thales Avionics page 32 Réf. CCC/12/006898 – rev. 07

9.1.2.3. Foreseeable Conditions

Functional operating conditions include all interfaces to/from the processors and instructions activated. As

already addressed above under the feature of the “Intended Function”, this could be controlled to some

extent via the software layer embedded on such Multi-core processors.

Environmental operating conditions include both normal operating conditions, within which the device is

expected to meet its characteristics and performance, and the abnormal operating conditions such as

HIRF
10

 and Lightning indirect Effects (LIE) and Single or Multiple Event Effects (SEE or MEE).

Analysis of COTS Multi-Core behavior in the event of an SEE is only possible using data provided by the

device suppliers and appropriately mitigated via software and the rest of the hardware at Circuit Board

Assembly (CBA) and equipment levels. The processor behavior under HIRF and LIE can only be

controlled via the introduction of hardware limitations for HIRF and protections from LIE embedded on

the CBA.

Functional operating conditions include all interfaces to/from the processors and instructions activated.

Environmental operating conditions include both normal operating conditions, within which the device is

expected to meet its characteristics and performances, and the abnormal operating conditions such as HIRF

and Lightning Indirect Effects (LIE) and Single or Multiple Event Effects (SEE or MEE)

Note that the design and development of boards or equipment have to fulfill ED-80/DO-254 requirements.

In conclusion for this chapter

 Regarding SEE, MEE, LIE and HIRF, there are no differences between single core processors and / or

multi-core ones. The analysis for SEE has to be provided by the processor manufacturer to the

equipment provider.

 Multi-core processor behavior regarding SEE has to be known and shared, by the equipment provider,

with authorities to demonstrate what it is covered at processor level and what has to be covered at board

and / or equipment level (we address here mitigation at board and / or equipment level)

 The Equipment provider has to demonstrate that mitigation at board level and / or equipment level is in

line with SEE, MEE, LIE and HIRF requirements for the considered DAL level of the equipment

10

HIRF : High Intensity Radiated Field

MULCORS

EASA

 Thales Avionics page 33 Réf. CCC/12/006898 – rev. 07

9.2. PROCESSORS SELECTION

Processor selection depends on two essential factors:

 The manufacturer

 The processor design.

The corresponding selection criteria are named strategic and technical.

Strategic criteria mainly deal with the openness of the manufacturer regarding design information and its

will to perform the required tests and measurements, for instance concerning the SER. They also address its

life expectancy and its will to provide a long-term production for the considered processors.

Conversely, technical selection criteria aim at determining, with the information available, whether the

considered processor is a good one for safety critical and hard real-time applications.

Several propositions of criteria have been introduced in the avionic community, for instance (Forsberg &

Karlsson, 2006) and (Green, et al., 2011). We can sum up those contributions in the following selection

criteria.

9.2.1. Strategic selection criteria

To be able to take the right decision, some classification criteria deal with the manufacturer itself. Indeed,

there is a growing gap between a COTS processor’s architecture complexity and its proposed services.

Most of the time, manufacturers provide exhaustive information on the processor’s functionalities while

mentioning few information on the architecture. However, architectural information is necessary to ensure

guaranteed performances and determinism as required in the certification process.

This section aims at providing objective criteria on the manufacturer’s implication to provide the required

information (eventually under NDA) to ensure determinism.

9.2.1.1. Selection criteria regarding the manufacturer situation

CRITERIA POSSIBLE VALUES OBSERVATIONS

The manufacturer has experience in

the avionic domain

Yes – no

The manufacturer is involved in the

certification process

Yes – no

The manufacturer publishes specific

communications

Yes – no This highlights a public will to pass the

certification process

The manufacturer has a sufficient

life expectancy

Yes - no As avionic systems have a long life, it is

necessary that the manufacturer is able to

ensure long term production

The manufacturer ensures a long

term support

Yes - no long term support is required

MULCORS

EASA

 Thales Avionics page 34 Réf. CCC/12/006898 – rev. 07

9.2.1.2. Manufacturer openness regarding design and tests information

Design information on a COTS processor is necessary to certify an avionic platform. Such information is

critical because it has a strong impact on the performance of the chip. Therefore, the manufacturer may not

agree to communicate specific design information that would be required to ensure determinism. Then,

with devices of equivalent functionality, it is relevant to favor manufacturers who agree on information

exchange.

Moreover, for an avionic component, it is necessary to perform specific robustness tests, such as a SEE

(Single Event Effect) named also, by processors manufacturer SER (Software Error Rate) determination,

including SEU/MBU estimations. Usually, manufacturers perform such tests on their own for internal use.

CRITERIA POSSIBLE

VALUES

OBSERVATIONS

The manufacturer provides

information on the processor

design

Yes – No –

under NDA

Collaboration with the processor manufacturer is

mandatory in order to provide to the certification

authority enough evidence of mastering the

processor

The manufacturer provides

information on bugs and errata

Yes – No –

Under NDA

Such information is mandatory and a major part of

the collaboration between the certification

applicant and the processor manufacturer

The manufacturer provides

information on SER

(SEU/MBU)

Yes – No –

Under NDA

Usually, manufacturers perform investigations

concerning SER on their own.

9.2.2. Technical selection criteria

Technical selection criteria aim at identifying undesirable features and correlated mitigation means on the

considered processor. For multicore processors, we can distinguish generic selection criteria that are valid

both for multicore and single-core processors, and multicore-specific selection criteria.

We introduce here a non-exhaustive list of generic selection criteria. Multicore specific selection criteria,

that constitute one main contribution of the study, are introduced and explained in the next chapter.

9.2.2.1. Focus on core architecture

The structure of a core has a strong impact on the execution of the embedded software. The components

and services usually found in a core are described here.

 Instruction model 9.2.2.1..1

The instruction set (ISA) is one major interface between hardware and software. It can be decomposed into

several categories of instructions:

MULCORS

EASA

 Thales Avionics page 35 Réf. CCC/12/006898 – rev. 07

 Arithmetical instructions. They can be dedicated to use specific platform services, such as hardware

locks.

 Branch instructions, including system calls

 Memory instructions

 Configuration instructions. They are used to write to specific configuration registers in the core, the

MMU or the cache controller.

 Floating point instructions

Usually, an instruction set is defined in a highly exhaustive way, and COTS processors implement a subset

of one or more ISA. Under avionic development constraints, the use of specific instructions can be

forbidden, such as optimized instructions whose execution is non-deterministic.

Some processors support a user-defined extension of the ISA. Specific instructions can be defined and their

execution is given to a specific coprocessor provided by the user. For instance, this is the case when

external floating point units are integrated on a SoC.

We consider the following selection criteria:

CRITERIA COMPONENT/

SERVICE

POSSIBLE

VALUES

OBSERVATIONS

The instruction set is

complete

Instruction

set

Yes – no

No information

An instruction set can be considered as

complete if any non-defined instruction is

decoded as a NOP
11

Several different

instruction sets are

supported

Instruction

set

Yes – no

Instructions have the

same length

Instruction

set

Yes – no If no, then it must be proven that the

instruction set is not ambiguous

The instruction set can

be extended

Instruction

set

Yes – no

The instruction set is

fully supported

Instruction

set

Yes – no If not, the platform behavior when

receiving any of the missing instructions

has to be documented

The instruction set

supports hypervisor

privilege level

Privilege

levels

Yes - no This is mandatory if a hypervisor

implementation is expected

Instructions can be

restricted to supervisor

or hypervisor privilege

level by SW

configuration

Instruction

set

Yes – no

No information

This is an elegant mitigation means to

prevent the execution of non-trusted

instructions.

11

 NOP : No OPeration

MULCORS

EASA

 Thales Avionics page 36 Réf. CCC/12/006898 – rev. 07

 Pipeline issues 9.2.2.1..2

The pipeline contains all processing units able to execute a program. The usual stages found in a pipeline

are:

 Fetch: fulfilled by the Fetch Unit. It picks the instructions to be executed from a storage device

according to their address. Usually, it implements a pre-fetch service (although a dedicated

component may be in charge of pre-fetch). It can also perform multiple fetches in one clock cycle

and maintain a local instruction queue. The fetch unit is linked to the Branch Unit that implements a

branch prediction algorithm.

 Decode and Dispatch: in this stage, instructions are read and routed to the adequate execution units.

Usually, several instructions can be decoded and dispatched in the same cycle. Dispatch rules can

be documented, but usually it is not the case.

 Execute: this stage is fulfilled by several processing units. We consider here:

o The Load/Store Unit for data transactions toward the address space. This unit may manage

several concurrent transactions. It also usually reorders read and writes transactions still

maintaining causality when there are dependencies.

o The integer Arithmetical and Logical units (ALU): usually, those units are duplicated to

improve performances. The allocation is performed during the Dispatch stage.

o The floating point arithmetical units (FPU)

The behavior of the Load-Store Unit is usually complex. It is therefore difficult to have a clear view

of the generated activity by the embedded code.

The corresponding criteria are:

CRITERIA COMPONENT/SERVI

CE

POSSIBLE

VALUES

OBSERVATIONS

The instruction unit can

fetch several instructions in

parallel

Pipeline

Instruction unit

Yes – no

No

information

The instruction unit has a

pre-fetch service depending

on a branch unit

Pipeline

Instruction unit

Yes – no

No

information

The pre-fetch is limited

inside a memory page

Pipeline

Instruction unit

Yes – no

No

information

If no, this may raise page faults out

of the software execution flow

The branch prediction can

be disabled

Pipeline

Branch unit

Yes – no

No

information

The branch prediction

policy is configurable

static/dynamic

Pipeline

Branch unit

Yes – no

No

information

A static branch prediction is easier to

analyze

MULCORS

EASA

 Thales Avionics page 37 Réf. CCC/12/006898 – rev. 07

The LSU reorders the

memory and IO transactions

Pipeline

Load/store unit

Yes – no

No

information

Transaction reordering is a source of

indeterminism whose impact on

worst case performance has to be

bounded

Transaction reordering can

be forbidden in the LSU

Pipeline

Load/store unit

Yes – no –

partially

No

information

Internal registers are

renamed during instruction

execution

Pipeline

Renaming

Yes – no

No

information

This optimization mechanism

 Virtual memory management 9.2.2.1..3

The virtual memory service is provided by the Memory Management Unit (MMU). This component is in

charge of translating virtual addresses into physical addresses, and verifying that the requesting software

has the sufficient access rights. On multicore platforms, this service can be located at core, at platform level

or at both levels.

A MMU usually contains two components: one dedicated to actually translate addresses and check access

rights, and a storage device, such as the Translation Look aside Buffers (TLB) to save locally the address

translation rules. A TLB behaves like a cache, so it has a replacement algorithm that is implemented by

hardware or software.

The virtual memory is defined with pages frames. A page is defined by its size and an offset. The

translation rule contains the page offset, size and access rights. Page sizes can be fixed or variable.

MULCORS

EASA

 Thales Avionics page 38 Réf. CCC/12/006898 – rev. 07

We define the following classification criteria:

CRITERIA COMPONENT/SERVIC

E

POSSIBLE VALUES OBSERVATIONS

TLB storage MMU

TLB architecture

TLB hierarchy

(L1/L2,

data/instruction

/unified)

The TLB

replacement

algorithm is

implemented in

hardware or software

MMU

TLB replacement

algorithm

Yes – no – both

No information

A software implementation of

the TLB replacement algorithm

is preferable

The page size is

fixed or variable

MMU Fixed – variable –

both

Variable size pages use

decreases the number of TLB

miss

The MMU detects

pages overlapping

MMU Yes – no

No information

If pages can overlap, this is a

source of indeterminism and a

security failure

 Private caches and scratchpads 9.2.2.1..4

The use of hierarchical memory improves the performance of software. We encounter caches and

scratchpads. A scratchpad is usually viewed as a cache with its management implemented by software. For

real-time applications, a classic approach consists of filling the scratchpad with the software’s data and

instructions (when the software’s data and instructions allow it). In a general way, the timing variability

when accessing private caches and scratchpads is considered to be bounded. Content prediction depends on

the cache replacement policy.

The size and the architecture of each cache, scratchpad and memory have a strong impact on software

performance.

We define the following classification criteria:

CRITERIA COMPONENT/SERVI

CE

POSSIBLE VALUES OBSERVATIONS

Private cache and

scratchpad

contents

Private caches and

scratchpads

Architecture

Data – instruction – unified

L1 or L1+L2 hierarchy

Private cache

replacement

policy

Private cache Least Recently Used

 Pseudo Least recently

used (documented or

not)

 LRU, LFU and FIFO are the

preferred policies for analysis

 PLRU needs to be

documented as it is usually

MULCORS

EASA

 Thales Avionics page 39 Réf. CCC/12/006898 – rev. 07

 Random

 Least frequently used

 FIFO

implemented with

optimizations for streaming

 Random replacement policy is

the worst choice as it is

completely non analyzable

9.2.2.2. Focus on peripherals

Most COTS systems on chip embed hardware accelerators in order to increase the I/O processing

performances. This is especially the case for network processing devices.

In many cases, such hardware accelerators are highly configurable and are granted a large autonomy in

their actions.

We define the following criteria:

CRITERIA COMPONENT/SERVICE POSSIBLE

VALUES

OBSERVATIONS

The overall architecture

is documented

Hardware accelerator

Architecture

Yes - no

The hardware accelerator

embeds microcode

Hardware accelerator

Architecture

Yes – no

Non documented

If yes, this microcode has to be

certified according to ED-

12/DO-178B/C

The hardware accelerator

is able to initiate master

transactions on the

interconnect

Hardware accelerator

Architecture

Yes – no

Non documented

If yes, a worst case load has to

be determined in order to

estimate the occupied bandwidth

on the interconnect

The hardware accelerator

contains internal

memory

Hardware accelerator

Architecture

Yes – no

Non documented

The accelerator internal

memory is protected

against SEU/MBU

Hardware accelerator

Architecture

Yes – no

Not documented

Parity or ECC has to be enforced

The hardware accelerator

can be bypassed

Hardware accelerator Yes – no

Not documented

This criterion is mandatory when

the hardware accelerator

behavior is incompatible with an

avionic usage

MULCORS

EASA

 Thales Avionics page 40 Réf. CCC/12/006898 – rev. 07

9.2.2.3. Focus on hardware assist for debug and monitoring

Most COTS processors provide debug mechanisms that enable breakpoint insertion, single step

execution… The usual way to debug bare metal software is to use the JTAG interface. On top of an

operating system, debuggers such as GDB
12

 can be used.

We define the following criteria:

CRITERIA COMPONENT/SERVI

CE

POSSIBLE VALUES OBSERVATIONS

The processor offers a

service for internal

debugging (step by step

execution and internal

registers view)

Debug service

Core level

Yes – no

Not documented

This is useful to validate a

piece of embedded

software and monitor the

processor behavior during

its execution

It is possible to have a

trace of the transactions

generated by the core

Debug service

Platform level

Yes – no

Not documented

This is useful to have a

direct view of the activity

generated by the core for

interconnect load

estimation

12

 GDB: Gnu DeBugger

MULCORS

EASA

 Thales Avionics page 41 Réf. CCC/12/006898 – rev. 07

9.3. MULTI-CORE TECHNOLOGY STATE-OF-THE-ART

This chapter covers tasks 1 and 2

9.3.1. Summary of task 1

Identify the types of multi-core processors currently available from the major manufacturers, along with

any that are anticipated in the near future (i.e. the next three years).

The multi-core processors identified should include DSPs (Digital Signal Processors), devices that combine

multiple processor cores with other airborne hardware devices such as Field-Programmable Gate Arrays

(FPGA) and any other types of multi-core processors that the study may reveal.

9.3.2. Summary of task 2

Identify the essential basic architectural characteristics or components of each type of processor and insert

them with the types of processor into a spreadsheet or database that shall be delivered to EASA at the end

of the study. Characteristics that might be taken into account in such a classification might include whether

the cores are homogeneous or heterogeneous, the memory, cache and data bus architectures of the devices,

the number of cores or whichever other criteria the study identifies as being important.

Emphasis shall be placed on features that differ from those of current single core processors and that may

prevent the functions executed on the processors from behaving in a deterministic and robustly partitioned

manner.

These would include features that may enable interference between cores due to common access to

memory, cache, data bus or I/O devices and any features intended to save energy that may dynamically

shut down a core, alter its executing frequency or dynamically alter the number of executing tasks.

Other features to capture in the spread sheet may include the presence of any software or COTS IP that is

provided with the processor and any features to control the hardware or the data transfers between cores

and other components, or to control the execution of any hosted software. The study shall identify any

COTS IP and whether it was developed and verified in compliance with any DAL of ED-12B / DO-178B.

Details in the spread sheet should be limited, such as the title or category of the feature or the number of

processors, with the detailed explanations of the features and their implications being provided in the text

of the report.

MULCORS

EASA

 Thales Avionics page 42 Réf. CCC/12/006898 – rev. 07

9.3.3. Basic Architecture characteristics

We can find diverse Multi-core processor architecture regarding the organization of cores on one hand and

the different types of memory accesses on the other hand which is as most important as the organization of

the cores.

The architecture for memory accesses can generate a lot of difficulties that we have to analyze and

mastered before declaring that the processor can be used in a safe environment like an aircraft.

Three main processor family Architectures can be found in the market

 Unified Memory Access (UMA),

 Distributed Architecture (DA)

 Single Address space, Distributed Memory (SADM)

When analyzing market processor architecture, we can notice that GPUs from ATI or NVDIA for example

have their main architecture based on the DA one with a variant that is each dedicated core memory is

embedded in the chip.

This architecture consumes a lot of pins linked to Memory Independence per core so they are used for

small core or for embedded cores this family is not addressed in this report.

UMA multi-core processor architecture is organized around one memory which is shared between all cores

(see chapter 9.3.3.1..1), this architecture can be found for example in Freescale and ARM family for their

low-end processors.

SADM multi-core processor architecture is organized around Cores having their own cache, dedicated

memory and can have accesses to other core memories using bus and/or Network. This architecture can be

found, for example, in Freescale, ARM or INTEL® family for their high-end processors.

Example of deployed multi-core architecture:

UMA DA SADM

Freescale P1, P2 family NVIDIA, ATI Freescale P3, P4, P5 and T family

ARM CORTEX® A8 and below ARM CORTEX® A9,

CORTEX® A15

 INTEL® Core I7, Core I5

Analyzing processors architecture, we can’t find show stoppers or unsuitable features that can be

demonstrated at this level of abstraction.

That means that we need to conduct the analyze processor by processor, to verify if the corresponding

architecture and associated features can be considered as suitable or not, so this is why Thales has moved

to a generic approach based on criteria per domain:

 Interconnect

 Cache

 Shared resources

MULCORS

EASA

 Thales Avionics page 43 Réf. CCC/12/006898 – rev. 07

9.3.3.1. Memory sharing architecture

In this chapter we propose to present the different types of memory accesses and the key points associated

with these architectures.

 Unified Memory Access (UMA) 9.3.3.1..1

The multi-core processor architecture is organized around one memory which is shared between all cores:

In this type of architecture, Access time to the memory is the same for each processor but we can notice

that this access time is directly linked with the memory bandwidth throughput; Read or Write operation

performed from or to the memory can be only one data per access.

This type of architecture requires arbitration management on one hand and integrity mechanisms on the

other hand to manage communication between cores and synchronization if required.

BUS

Core
1

Core
2

Core
n

EXTERNAL MEMORY

MULCORS

EASA

 Thales Avionics page 44 Réf. CCC/12/006898 – rev. 07

 What about caches? 9.3.3.1..2

UMA architecture is upgraded introducing cache memories; these are high speed memories between cores

and External Memory. These memories have the same class of access time as its dedicated core.

These cache memories introduce other kind of problems linked to data integrity. If two cores share the

same data area, when one of these two manipulate a data item, the second core which has a copy of this

data needs to know that the data item is upgraded by another core (this problem occurs mainly in SMP
13

mode where one Operating System manages all cores allocating them to processes for one running

Airborne Software application in a given period of time).

In multi-core processors we need to take care about how Cache Memory Coherency is assumed

13

 SMP : Symmetrical Multi Programming

BUS

Core
1

Core
2

Core
n

EXTERNAL MEMORY

Cache Cache Cache

MULCORS

EASA

 Thales Avionics page 45 Réf. CCC/12/006898 – rev. 07

 Distributed Architecture (DA) 9.3.3.1..3

In this Architecture, each core has the use of a dedicated memory with or without dedicated cache

depending on the processor architecture.

A local network realizes the link between cores and it is used for data and/or command transfer

We can find the use of this kind of architecture, with or without caches, mainly in GPUs
14

 with a variant

where memory is embedded inside the die and dedicated per core. A Network is used to communicate

between cores and the outside.

Cores can be allowed (depending on the implemented policy) to have access directly to the data using the

network. With this kind of architecture, the performance of the global processor is directly linked to the

quality and performance of the local network. We can also speak about this being shared memory

architecture.

Remark: in this architecture, Memory Cache Management is simplified and occurs in the same way as in a

single core processor (separate cache and memory are dedicated to each core).

14

 GPU : Graphics processing Unit)

EXT MEMORY

Core
1

Cache

I/F

EXT MEMORY

Core
2

Cache

I/F

EXT MEMORY

Core
n

Cache

I/F

LOCAL NETWORK

MULCORS

EASA

 Thales Avionics page 46 Réf. CCC/12/006898 – rev. 07

 Architecture named “Single Address space, Distributed Memory” or SADM 9.3.3.1..4

This is the last class of processor architecture named SADM where Cores have their own cache, they can

also have dedicated memory but they can have access to other core memories using the bus or the Network.

In this architecture we can notice that we have separate clusters. Each cluster can have its own private

memory shared between cores allocated to this cluster. Exchanges between clusters are realized using local

Network.

Note: In some multi-core architecture, like in QorIQ™ from Freescale or in ARM, the cluster bus is also

part of the global network. In this variant of architecture, the bandwidth is at least dimensioned to sustain

all the transfers in a cluster without causing perturbation to the others (this point has to be verified when

the selection of a multi-core is proposed).

EXT MEMORY

Core
1

Cache

BUS

EXT MEMORY

Core
n

LOCAL NETWORK

Core
2

Cache Cache

Core
1

BUS

Core
n

Core
2

Cache Cache Cache

MULCORS

EASA

 Thales Avionics page 47 Réf. CCC/12/006898 – rev. 07

9.3.4. Multi-core galaxy overview

This analysis is based on public available information; information under NDA can’t be described in this

analysis.

See Excel File where galaxy overview has been developed.

Multicore_processors
_roadmap_r2.xlsx

9.3.4.1. A short overview of processor roadmap

We speak about a short overview due to the fact that this chapter can only detailed accessible information

on processor roadmap from the three main actors in the computing domain those are: Freescale, ARM and

INTEL®. Detailed available information on core architectures is in the Excel Spread Sheet.

 Freescale Roadmap 9.3.4.1..1

Figure 2: Freescale Roadmap
(source: Freescale)

http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/Mulcors_processors_roadmap_r2.xlsx

MULCORS

EASA

 Thales Avionics page 48 Réf. CCC/12/006898 – rev. 07

First Generation

P1 series is tailored for gateways, Ethernet switches, wireless LAN access points, and general-purpose

control Airborne Software. It is the entry level platform, ranging from 400 to 800 MHz devices

P2 series is designed for a wide variety of applications in the networking, telecom, military and industrial

markets. It will be available in special high quality parts,. It is the mid-level platform, with devices ranging

from 800 MHz up to 1.2 GHz.

P3 series is a mid-performance networking platform, designed for switching and routing. The P3 family

offers a multi-core platform, with support for up to four Power Architecture e500mc cores at frequencies

up to 1.5 GHz on the same chip, connected by the CoreNet™ coherency fabric.

P4 series is a high performance networking platform, designed for backbone networking and enterprise

level switching and routing. The P4 family offers an extreme multi-core platform, with support for up to

eight Power Architecture e500mc cores at frequencies up to 1.5 GHz on the same chip, connected by the

CoreNet™ coherency fabric..

P5 series is based on the high performance 64-bit e5500 core scaling up to 2.5 GHz and allowing

numerous auxiliary application processing units as well as multi core operation via the CoreNet™ fabric.

Applications rage from high end networking control plane infrastructure, high end storage networking and

complex military and industrial devices

Second generation

T series is based on high performance 64 bits e6500 dual-threaded core with ALTIVEC function. The

internal architecture is based on clusters, each containing four dual-threaded cores and one memory

controller and various other accelerators

Third generation

X series: no information can be available for this series.

http://en.wikipedia.org/wiki/Network_switch
http://en.wikipedia.org/wiki/Router_%28computing%29
http://en.wikipedia.org/wiki/PowerPC_e500
http://en.wikipedia.org/wiki/Backbone_network
http://en.wikipedia.org/wiki/Network_switch
http://en.wikipedia.org/wiki/Router_%28computing%29
http://en.wikipedia.org/wiki/PowerPC_e500
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/PowerPC_e5500

MULCORS

EASA

 Thales Avionics page 49 Réf. CCC/12/006898 – rev. 07

 ARM Roadmap 9.3.4.1..2

ARM has a strong reputation as an IP provider and manufacturer of low-power consumption processors. A

lot of microcontrollers implement the ARM IP, and it is the leader on this market.

ARM proposes a set of IP for multicore processors: MPCore™. It contains an IP for an interconnection:

Corelink™. This highly configurable interconnection can support several ARM bus protocols: AMBA®

ACE, AMBA® AXI, AHB, AHB-Lite, and APB. It supports three kinds of cores: CORTEX®-A9,

CORTEX®-A15 and ARM11, and it can connect up to 4 cores.

ARM components’ architectures are open and documented. This goes in favor of being a good candidate

for use in avionics and for further assessment.

CORTEX®A15 is based on a 1 to 4 core product, SMP within a single processor cluster up to 2,5 GHz. Its

4 core version is designed for used in Home & Web servers, Wireless Infrastructure Equipment, Digital

Home entertainment and its 2 core version is designed for Smartphone and Mobile Computing.

CORTEX® A9 is based on a 1 to 4 core product. It is designed for Mainstream Smartphones, Tablets, Set

top boxes, Home Media Players, Auto Infotainment, Residential Gateways and the 1st generation ARM

low power server.

CORTEX® A8 is based on a single core processor with a Frequency range from 600MHz to 1GHz. It has

been designed for Smartphones, Netbooks, Set-up Boxes, Digital TV, Home networking and Printers.

No public information are available after CORTEX®A15

Figure 3: ARM Roadmap
(source: ARM)

MULCORS

EASA

 Thales Avionics page 50 Réf. CCC/12/006898 – rev. 07

 INTEL
®
 ROADMAP 9.3.4.1..3

Figure 4: INTEL Roadmap
(source: INTEL)

MULCORS

EASA

 Thales Avionics page 51 Réf. CCC/12/006898 – rev. 07

INTEL
®

 proposes a large variety of multicore processors for domestic, professional or embedded use, We

propose to give below a quick overview of the existing series

 INTEL® Atom™:

o This series of processors is dedicated to embedded systems (on this market, the leader is

ARM). The current generation is the third one with dual-core products. There are two major

series: the D(esktop) and the N(etbook). A particularity is the memory hierarchy stack: there

is only one shared cache for all the cores.

 INTEL® Core™ i7:

o This series is dedicated to a domestic use (desktop applications, gaming…). The current

generation is the second one (released in late 2011) and is composed of 2, 4 and 6 core

processors. They embed the classic INTEL® optimizations (turbo boost, support for

virtualization). Their memory hierarchy is two level of private cache per core, and a level of

shared cache. An extension to this series is the Intel® Core™ i7 Extreme.

 Intel® Core™ i5:

o This series is similar to the Intel® Core™ i7, except it is composed of 2 and 4 cores

processors. Globally, the performance of those processors is lower than those from the

Intel® Core™ i7 series.

 Intel® Core™ i3:

o This series is similar to the two previous ones, except it is only composed of dual-core

processors, with worse performance.

 Intel® Celeron™:

o A Celeron is a processor belonging to another series with limited capacity and a lower cost.

This series contains some dual-core processors.

 Intel® Core™ 2:

o This series contains different types of processors, some dedicated to desktop applications,

some dedicated to high performance and some dedicated to low consumption. This series is

composed of 1, 2 and 4 cores processors.

 Intel® Pentium™:

o This series contains some low-cost dual core processors.

INTEL® doesn’t give out any more public information than that collected in this short term Roadmap.

Available information has a one year limitation and is focused around the new bridge (no information on

internal features) and around new core performance.

MULCORS

EASA

 Thales Avionics page 52 Réf. CCC/12/006898 – rev. 07

9.3.4.2. Multi-core processors manufacturers and addressed market segments

The multi-core technology can be used in several market segments. A non-exhaustive list of such segments

is provided below:

Application Domain Expected characteristics Manufacturers

Desktop and

gaming applications

Correct average performance for general

operations and floating points operations.

No real-time guarantees are required.

INTEL®, AMD, IBM,

Broadcom Corp

Multimedia

applications

Fast integer and floating point calculus,

required in image and video processing.

The corresponding systems may consider

soft real time constraints in order to be

reliable in stream processing.

Nvidia, AMD, Texas

Instruments, VIA,

Freescale, Broadcom Corp

Safety applications

(automotive,

medical, spatial,

defense, avionics)

High level of integrity and hard real time

performance.

Robustness under aggressive

environmental constraints is very

important, especially in spatial

applications.

Aeroflex Gaisler (spatial),

ARM, Freescale, IBM,

Texas Instruments, Marvell,

Infineon (defence and

aerospace)

Parallax Semicond

(medical)

Automotive (low

critical

functionalities)

Low-power consumption, reliability and

soft real-time constraints
Freescale, Infineon

Networking

applications

(mainly switches

and servers)

High bandwidth in network processing and

correct platform integrity.

 Because those applications are usually in

contact with the open world, security

features, including partitioning, are very

important.

Oracle, IntellaSys,

Freescale, IBM, Broadcom

Corp, Cavium Corp, Tilera,

Marvell, Fujitsu

High performance

industrial

applications

High bandwidth in network processing and

extremely fast integer and floating points

operations for digital signal processing.

Texas Instruments,

IntellaSys, Cavium Corp,

IBM, Fujitsu.

Low power

embedded

applications

Acceptable performance while limiting the

power consumption.

ARM core IPs

Infineon, Nvidia, Freescale,

Texas Instruments,

Broadcom Corp

MULCORS

EASA

 Thales Avionics page 53 Réf. CCC/12/006898 – rev. 07

9.3.4.3. Academic projects around multi-core

Several academic projects address multi-core concerns for hard real-time systems, including Embedded

Aircraft Systems. Those projects aim at introducing new hardware and software concepts in classic multi-

core architectures to enforce determinism and real-time behavior on virtual or synthesized platforms. Such

concepts can be implemented on general purpose COTS processors if processor manufacturers can find

some commercial interest.

In the state-of-the-art of academic projects dealing with predictability on multi-core platforms, we found

the relevant projects:

 MERASA, parMERASA: This project (Multi-Core Execution of Hard Real-Time Applications

Supporting Analysability) and its extension aim at proposing a set of tools and recommendations

for predictability and WCET analyses on a multi-core architecture. The first project is finished now

and it proposes the following tools :

o A fully FPGA synthesizable multi-core processor targeting

o A SystemC simulator of determinist multi-core platform

o WCET analyses tools for embedded software. They are based on the open-source library

Otawa and on the proprietary tool Rapitime.

 JOP: This is a FPGA implementation of a multi-core processor executing java bytecode. It comes

with a configurable deterministic interconnect bus and a predictable memory. This project explores

some possible optimizations for the interconnect configuration.

 MUSE: This project deals with real-time multi-core for spatial platforms. They address problems

close to fault-tolerance. This project’s concerns are close to Embedded Aircraft Systems concerns.

Indeed their main lock is the parallelization of critical operations.

 ARAMiS: This project was launched by the German government in the end of 2011. It aims at

developing concepts that could enable the use of multi-core platforms in automotive, railway and

Embedded Aircraft Systems.

MULCORS

EASA

 Thales Avionics page 54 Réf. CCC/12/006898 – rev. 07

9.3.4.4. Industrial collaborations

In this chapter, we address the two main initiatives around multi-core:

 MCFA (Multi-Core For Avionics) initiative was launched by Freescale in early 2011 with the

major actors of Embedded Aircraft Systems, a detailed list of actors and objectives can be found on

the MCFA website :

http://media.freescale.com/phoenix.zhtml?c=196520&p=irol-newsArticle&ID=1606741&highlight

 The Multi-core Association® (MCA) is an industry association that includes leading companies

implementing products that embrace multi-core technology. Their members represent vendors of

processors, operating systems, compilers, development tools, debuggers, ESL/EDA tools,

simulators, application and system developers, and universities. Their primary objective is to define

and promote open specifications to enable multi-core product development. The complete list of

actors can be found on their website : http://www.multicore-association.org/

9.3.5. Software support for Embedded Aircraft Systems

9.3.5.1. Airborne Certified Operating System

A wide community of actors act in Avionics Embedded Software, a sum-up is given below:

 Wind River with two class of Operating System

o VxWorks CERT Platform – Certified Operating System based on VxWorks compliant with

ED-12B/DO-178B

o VxWorks 653 Platform – Operating System featured from VxWorks with an ARINC653

API supporting DO-197

 Green Hills Software which provides

o Integrity-178B RTOS
15

 which offers an ARINC653 API

o GMART, an ADA run-time compliant with ED-12B/DO-178B level A

o Integrity Multivisor : an hypervisor that offers virtualization to help hosting a wide diversity

of Operating System

 SYSGO which provides

o PikeOS a micro-kernel offering both a RTOS and a virtualization concept

 LynuxWorks which provides

o LynxOS-178a RTOS offering via Virtual Machine a virtualization concept

o LynxOS 178 is a FAA – accepted Reusable Software Component (RSC)

 DDC-I which provides

o DEOS, a RTOS certified up to level A supporting ARINC653 part4

o HeartOS, a micro-kernel POSIX Based certified to ED-12B/DO-178B up to level A

15

RTOS : Real Time Operating System

http://media.freescale.com/phoenix.zhtml?c=196520&p=irol-newsArticle&ID=1606741&highlight
http://www.multicore-association.org/

MULCORS

EASA

 Thales Avionics page 55 Réf. CCC/12/006898 – rev. 07

 THALES Avionics which provide

o MACS2, an ARINC653 Operating System certified up to level A and supporting

Incremental Certification.

This is a non-exhaustive list of Operating System providers and Operating System used in embedded

certified Embedded Aircraft Systems

Some OS providers offer virtualization techniques to help the hosting of different Operating Systems in

different temporal slots, these techniques are mainly based on what it is called micro-kernel.

Most of these Operating System providers offer a multi-core approach of their solution based only on

compatibility with ED-12B/DO-178B or ARINC653 but without a real analysis on how to manage the

multi-core processor regarding the certification point of view.

9.3.5.2. Software definition / explanation

 Processes and Threads 9.3.5.2..1

Threads differ from traditional multitasking operating system processes in that:

 Processes are typically independent, while threads exist as subsets of a process

 Processes carry considerably more state information than threads, whereas multiple threads within a

process share process state as well as memory and other resources

 Processes have separate address spaces, whereas threads share their address space

 Processes interact only through system-provided inter-process communication mechanisms

 Context switching between threads in the same process is typically faster than context switching

between processes.

 Multithreading 9.3.5.2..2

Multi-threading is a widespread programming and execution model that allows multiple threads to exist

within the context of a single process.

These threads share the process' resources, but are able to execute independently. The threaded

programming model provides developers with a useful abstraction of concurrent execution. However,

perhaps the most interesting application of the technology is when it is applied to a single process to enable

parallel execution on a multiprocessing system.

 Processes, kernel threads, user threads 9.3.5.2..3

A process is the "heaviest" unit of kernel scheduling.

Processes own resources allocated by the operating system. Resources include memory, file handles,

sockets, device handles, and windows. Processes do not share address spaces or file resources except

http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/State_%28computer_science%29
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Resource_%28computer_science%29
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Resource_%28computer_science%29
http://en.wikipedia.org/wiki/Handle_%28computing%29

MULCORS

EASA

 Thales Avionics page 56 Réf. CCC/12/006898 – rev. 07

through explicit methods such as inheriting file handles or shared memory segments, or mapping the same

file in a shared way. Processes are typically preemptively multitasked.

A kernel thread is the "lightest" unit of kernel scheduling.

At least one kernel thread exists within each process. If multiple kernel threads can exist within a process,

then they share the same memory and file resources. Kernel threads are preemptively multitasked if the

operating system's process scheduler is preemptive.

Threads are sometimes implemented in userspace libraries, thus called user threads.

The kernel is not aware of them, so they are managed and scheduled in userspace. Some implementations

base their user threads on top of several kernel threads to benefit from multi-processor machines.

9.3.5.3. The impact of multi-cores on Software Development

 Memory Management 9.3.5.3..1

Multi-core processor offers opportunities to increase performance and reduce footprint (size weight and

power dissipation).

Multi-core presents a new challenge to deal with, how to take benefit of these cores, currently not much

Airborne Software can benefit from such advantages due to the complexity of parallelization. Each core

contains its own set of execution resources, resulting in very low latency parallel execution of Airborne

Software threads within a single physical CPU package.

The benefits of multi-core processors are not limited to increased performance. Multi-core processors

provide greater system density, allowing organizations to maximize the productivity of their available floor

space.

Since they operate at lower frequencies, multi-core processors use less power and generate less heat per

core than the commensurate number of single-core processors

MM_REM1: Most of the multi-cores share their front side bus as well as the last level of cache. Regarding

this, it is possible for one core to saturate the shared memory bus resulting in degradation of performance

and safety.

The front side bus, which is also known as the memory bus, is the "highway" upon which data travels as it

is written to or read from memory.

“Memory bandwidth” is the amount of data that can travel on the memory bus in a given period of time

usually expressed in MBps
16

 or Gbps
17

. Although improvements in memory system performance have

historically lagged behind improvements in processor performance, the chip manufacturers are working

hard to close the gap.

But even if they're successful, if the new multi-core chips implement significantly faster memory systems,

as long as the memory bandwidth is shared between the cores, there will always exist the potential for

bottlenecks.

16

 MBps : Mega-Byte per second
17

 Gbps : Giga-bits per second

http://en.wikipedia.org/wiki/Scheduling_%28computing%29
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/Multiprocessing

MULCORS

EASA

 Thales Avionics page 57 Réf. CCC/12/006898 – rev. 07

And as the number of cores per processor and the number of threaded Airborne Software applications

increases, the performance of more and more Airborne Software applications will be limited by the

processor’s memory bandwidth.

One approach per example can be:

One technique which mitigates this limitation is to intelligently schedule jobs onto these processors,

managing the memory bandwidth demand versus its supply. Avionics Airborne Systems can be configured

to automate this technique when hosting high DAL level Airborne Software.

At Avionics Airborne System level, with the use of an Hypervisor, the "memory bandwidth resource" that

represents the amount of available memory bandwidth is created and assigned to each core. The value of

this "memory bandwidth resource" can be configured on each core by the Hypervisor itself. The memory

bandwidth resource is now shared among the Airborne Software applications running on the different cores

of the Multi-core processor.

 Mapping 9.3.5.3..2

In advanced parallel processing Airborne Software, the final step in this process is mapping the threads to

cores. In our assignments, this mapping can be done by the Operating System statically or dynamically

regarding available core resources.

We have introduced recommendations on this point in this report.

If Airborne Software is developed using processes or threads, it is possible to take benefit of this

development for addressing a multi-core component. To succeed in process or thread allocation, we need to

understand what are the processes that can be executed simultaneously, which means we need to have

detailed knowledge of the Airborne Software.

There are many dedicated tools to help programmers to map threads onto the cores for INTEL®

processors, and Airborne Operating Systems for multi-cores (Greenhills, Wind River, Sysgo, LynuxWorks,

etc.) help programmers to execute this mapping.

MULCORS

EASA

 Thales Avionics page 58 Réf. CCC/12/006898 – rev. 07

9.3.6. Examples of representative multi-core architectures

In this chapter we present a set of COTS multi-core architectures whose technologies are representative of

the different targets described previously:

 Networking

 Low power embedded systems

 High processing performances

We also detail a SoC
18

 FPGA
19

 fabric that embeds several items of ARM core IP
20

, but leaves the

interconnect implementation to the programmer. The objective is to give a concise view of the different

technologies and services deployed in the cores, interconnects and peripherals.

Remark to partition or virtualize the cores, there are Hypervisors provided for the multi-core processor

directly by the component manufacturer such as TOPAZ for Freescale QorIQ™ family or XEN for

INTEL
®

 or directly by the Operating System provider, their features and characteristics have to be

analyzed ‘case per case’ to ensure that their could not impair / reduce confidence in the application safety.

9.3.6.1. Communication and Networking Processor

 Freescale QorIQ™ P2020 9.3.6.1..1

The QorIQ™ P2 platform series, which includes the P2020 and P2010 communications processors, is

dedicated for a wide variety of applications in the networking, telecom, military and industrial markets.

This processor delivers dual- and single-core frequencies up to 1.2 GHz on a 45 nm technology low-power

platform.

The QorIQ™ P2 series consists of dual- and single-core scaling from a single core at 533 MHz (P1011) to

a dual core at 1.2 GHz (P2020).

The P2020 and P2010 communications processors both have an advanced set of features:

 Two e500 Cores

 The 64-bit memory controller offers future-proofing against memory technology migration with

support for both DDR2 and DDR3. It also supports error correction codes, a baseline requirement

for any high-reliability system.

 Other memory types such as flash are supported through the 16-bit local bus,

 USB
21

, SD/MMC and serial peripheral interface (SPI).

18

SoC : System on Chip
19

 FPGA : Field Programmable Gate Array
20

 IP : Intellectual Property

MULCORS

EASA

 Thales Avionics page 59 Réf. CCC/12/006898 – rev. 07

9.3.6.1..1.1 e500 Coherency Module (ECM) and Address Map

The e500 coherency module (ECM) provides a mechanism for I/O-initiated transactions to snoop the bus

between the e500v2 cores and the integrated L2 cache in order to maintain coherency across local

cacheable memory. It also provides a flexible switch-type structure for core- and I/O-initiated transactions

to be routed or dispatched to target modules on the device.

The P2020 supports a flexible 36-bit physical address map. Conceptually, the address map consists of local

space and external address space. The local address map is supported by twelve local access windows that

define mapping within the local 36-bit (64-Gbyte) address space.

The P2020 includes the address translation and mapping units (ATMUs) to make part of a larger system

address space through the mapping of translation windows. The ATMUs allows the P2020 to be part of

larger address maps such as those of PCI Express or RapidIO

In such an ECM, the Airborne Embedded System provider has to obtain from the processor manufacturer

knowledge of all the included features and mechanisms that can be disabled for safety requirements.

21

 USB : Universal Serial Bus

Figure 5: P2010 : 2020 Overview
(source: Freescale Fact Sheet)

MULCORS

EASA

 Thales Avionics page 60 Réf. CCC/12/006898 – rev. 07

 e500mc Cores 9.3.6.1..2

The e500mc core (see Figure 6) is a recent update of a long series of PowerPC cores developed by

Freescale. It was released in 2008 for the PowerQUICC series and the QorIQ™ series.

Figure 6: e500mc PowerPC core overview
(source: Freescale e500mc Reference Manual)

MULCORS

EASA

 Thales Avionics page 61 Réf. CCC/12/006898 – rev. 07

We sum up the essential features of e500mc cores in the following table:

Internal component Features

Pipeline
6 stages pipeline

out-of-order execution, and in-order completion

Instruction set Power ISA v 2.06 (partially supported)

Privilege levels
User and super-user mode

Guest and non-guest mode (used by the hypervisor)

Fetch unit
Fetch up to 4 instructions in the same clock cycle

Pre-fetching policy documentation access restricted

Load/Store Unit Out-of-order load/store execution (still ensuring coherency)

Branch Unit Static/dynamic branch prediction

Caches

Separated 32k Data and instruction L1 caches

Unified 128k L2 Cache

Snoop mechanisms for cache coherency

Cache pre-filling and locking mechanisms through dedicated instructions

L1 Cache replacement policy: LRU

L2 Cache replacement policy: PLRU

L1 Cache implements parity protection, L2 Cache implement ECC

MMU

Two level Translation Look aside Buffers (TLB) tables

L1TLB coherency ensured regarding L2TLB contents

L2TLB management has to be implemented in the embedded software

Bus interface Partial documentation available under NDA

Debug and monitoring 4 Performance Monitor Registers counters may observe 128 different events.

MULCORS

EASA

 Thales Avionics page 62 Réf. CCC/12/006898 – rev. 07

 Hypervisor 9.3.6.1..3

To manage its multi-core processor family, Freescale has developed and provide a Hypervisor named

TOPAZ which manages:

 Security and separation

 Messaging among cores

 System-level event handling

 Debug support

TOPAZ is considered as a small hypervisor for embedded systems based on Power Architecture

technology, it initial version focuses on static partitioning (TOPAZ is not a scheduler):

 CPUs, memory and I/O devices can be divided into logical partitions

 Partitions are isolated one from the other

 Configuration is fixed until a reconfigure and system reboot

 TOPAZ not address the problem of multiple operating systems on 1 CPU

TOPAZ has been developed for the QorIQ™ family and it uses a combination of full-virtualization and

para-virtualization which offers performances and minimal changes to guest operating systems (impact on

BSP layer).

TOPAZ Hypervisor has been developed to minimalize “intrusivity” and it offers a limited set of services

such as interrupt controller, inter-partition interrupts, byte-channels, power management, active / standby /

failover and error management.

Memory I/F

Core Core

Operating

SystemD
ri
v
e

r

D
ri
v
e

r

D
ri
v
e

r

Operating

SystemD
ri
v
e

r

D
ri
v
e

r

D
ri
v
e

r

Core

Operating

SystemD
ri
v
e

r

D
ri
v
e

r

D
ri
v
e

r

INTERCONNECT

HW Accelerator

Bus I/F

Network I/F

Memory I/F

Hypervisor

API

Appli.1 Appli.3Appli.2

P1

P2

P3

P4

P1

P2

P3

P1

P2

L1 L2 L1 L2 L1 L2

L3 Cache I/F

HW AcceleratorHW Accelerator

API

Appli.1 Appli.3Appli.2

P1

P2

P3

P4

P1

P2

P3

P1

P2

API

Appli.1 Appli.3Appli.2

P1

P2

P3

P4

P1

P2

P3

P1

P2

MULCORS

EASA

 Thales Avionics page 63 Réf. CCC/12/006898 – rev. 07

 Networking platform: Freescale QorIQ™ P4080 9.3.6.1..4

The QorIQ™ series is initially dedicated to networking. Yet it is viewed in the avionic community as a

good candidate to analyze effort to reach acceptance of such a multi-core processor in Embedded Aircraft

Systems.

Thanks to the MCFA initiative from Freescale to help Aircraft Embedded Equipment provider conducting

their acceptance process on the QorIQ™ series.

The QorIQ™ P4080 (see Figure 7) integrates eight cores and a large set of hardware accelerators for fast

stream processing.

Figure 7: P4080 Overview
(source: Freescale Fact Sheet)

MULCORS

EASA

 Thales Avionics page 64 Réf. CCC/12/006898 – rev. 07

9.3.6.1..4.1 QorIQ™ Processor Interconnect

In QorIQ™ processor, the interconnect is named Corenet™. Its complete architecture is proprietary and

less documented; this is the case for the main majority for all manufacturers, so in this report, we have

focused on the interconnect and recommendations to master its behavior.

The interconnect implements the following services:

 Arbitration and transfer of transactions between a set of master nodes (Cores, Ethernet controllers

through the Frame Manager, DMA
22

 engines) and the slave nodes (DRAM
23

 controller, I/O). A

maximum of four transactions may be arbitrated in each CoreNet™ cycle. A transaction is 128

bytes width. It corresponds to a cache line. The CoreNet™ protocol is said to be lossless.

 2x1024k Shared L3 cache level (CoreNet™ Platform Cache)

 Peripheral Access Management Units (PAMU): they play a role close to an MMU
24

 for the

different peripherals

 Debug facilities: Aurora interface for real-time debug

Freescale is actively working to be able to provide sufficient guarantees on Corenet™ behavior without

divulging the core information on its internal architecture, thanks to MCFA.

9.3.6.1..4.2 Peripherals

The P4080 provides a large set of peripherals and I/O’s
25

. The most important one is the Data Path

Acceleration Architecture (DPAA). It is composed of a set of hardware accelerators that can:

 Initiate DMA transfers from several I/O’s, such as PCIe or Ethernet bus

 Reassemble, encrypt/decrypt and parse packets

 Manage packet buffers

 Dispatch packets among dedicated cores for processing, with load-balancing if necessary

The other main peripherals are:

 The Enhanced Local Bus Controller (ELBC): This bus connects peripherals usually met in

microcontroller architectures: UART, flash memories, I2C interfaces, SPI interface…

 The Ocean network: This network interconnects several PCIe controllers and Serial RapidIO

interfaces. It is completed with DMA controllers.

Peripherals Internal memories include ECC protection. Proprietary microcode is embedded in some

elements of the DPAA.

22

 DMA : Direct Memory Access
23

 DRAM :Dynamic Random Access Memory
24

 MMU : Memory Management Unit
25

 I/O : Input / Output

MULCORS

EASA

 Thales Avionics page 65 Réf. CCC/12/006898 – rev. 07

9.3.6.2. Low-Power Multi-core IP: ARM CORTEX®-A15 MPCore™

ARM released the MPCore™ series to provide an IP of scalable, highly configurable and low-power multi-

core processors.

This series comes as a set of several IPs for various components (cores, interconnect, peripherals)

We describe here the CORTEX® A15 MPCore™ (see Figure 8) as the most recent processor in this series.

It is organized as a cluster of up to four cores connected with a Snoop Control Unit containing a L2 cache

level.

Some implementations embed several clusters, enabling the use of more than four cores.

The interface with the peripheral bus implements the latest version of the Advance Microcontroller Bus

Architecture (AMBA®) protocol: AMBA® ACE.

Figure 8: ARM CORTEX®-A15 MPCore™ Overview
(Source: CORTEX®-A15 Technical Reference Manual r3p0)

MULCORS

EASA

 Thales Avionics page 66 Réf. CCC/12/006898 – rev. 07

 CORTEX®-A15 Cores 9.3.6.2..1

Mains ARM CORTEX®-A15 features are:

Internal component Features

Instruction set

ARM v7-A

THUMB™

JAZELLE™ (execution of Java Bytecode)

Pipeline 8 stages pipeline

Fetch Unit Static/dynamic branch prediction

Caches
Separated Data and instruction 32k L1 caches

LRU replacement policy for all caches

MMU

Two level Translation Lookaside Buffers (TLB). L1 TLB is separated

data/instructions. L2 TLB is unified.

Hardware translation table walk in case of L2 TLB miss

Interrupts Shared interrupts managed by the Generic Interrupt Unit

Bus interface Direct connection to the Snoop Control Unit

 Snoop Control Unit: First Level interconnect 9.3.6.2..2

The Snoop Control Unit (on Figure 8: Non processor/Level 2) is the “inter-core interconnect”. It is the first

shared resource between the cores.

The Snoop Control Unit provides the following services:

 Arbitration and transport of memory requests for each core

 Management of the shared L2 cache, whose size is configurable between 512K and 4M. It

implements an optimized MESI protocol for cache coherency.

 Support for inter-cache data and instruction transfers.

 AMBA® ACE master Interface with the main interconnect (Corelink™, described further)

 Cache coherency acceleration through the Acceleration Coherency Port

Snoop requests (requests from the cores to the addressed space) are therefore interleaved in the Snoop

Control Unit. They are propagated on the single AMBA® ACE master interface to the second level

interconnect. However, this protocol allows several concurrent transactions to be interleaved. Multiple

accesses can therefore occur.

MULCORS

EASA

 Thales Avionics page 67 Réf. CCC/12/006898 – rev. 07

 Corelink™ Network: Peripheral interconnect 9.3.6.2..3

The connection between the Snoop Control Unit and the main RAM, L3 cache and peripherals is provided

by Corelink™. It is a dedicated IP for on chip networks. It may interconnect several clusters of ARM

MPCore™.

This interconnect implements the AMBA® ACE protocol for nodes (masters and slaves) connections.

Older versions are limited to AMBA® AXI protocol. It is a full crossbar, and it comes with a set of

services for transaction management:

 Priority (quality of service) of transactions configuration

 Latest granted first arbitration policy in the same domain of priority

 Transactions monitoring and performance measurements

 Hardware assist for atomic access insurance

Figure 9: Corelink™ Example of implementation
(source ARM infocenter - Corelink™ CCI400 Cache coherent interconnect Technical Reference Manual)

MULCORS

EASA

 Thales Avionics page 68 Réf. CCC/12/006898 – rev. 07

 Trust Zone implementing protections between secure and non-secure transactions. The Trust Zone

is used for hypervisor implementation.

9.3.6.3. Multi-core DSP: Texas Instruments TMS320C6678™

Texas Instruments proposes the TMS320C66xx™ series of multi-core DSPs for multimedia infrastructures,

high performance image processing and medical applications.

The TMS320C66xx™ series proposes high processing capabilities with up to 8 DSP cores, a highly

configurable interconnect and a subsequent set of IO.

We focus here on the TMS320C6678™ octo-core DSP processor (see Figure 10).

Figure 10: TMS320C6678™ architecture overview
Source: TMS320C6678™ Multicore Fixed and Floating-point Digital

Signal Processor – Rev C

MULCORS

EASA

 Thales Avionics page 69 Réf. CCC/12/006898 – rev. 07

 DSP Cores: C66x™ CorePac 9.3.6.3..1

DSP Cores are optimized for vector scalar product operations.

The C66x™ CorePac contains the C66x™ DSP and a set of hardware components that stand between the

core and the interconnect.

They provide the functionalities we classically find in a general purpose core:

 Cache levels

 Memory management and protection

 Bus interface

 Interrupt controller

Figure 11: CorePac overview
Source: C66x™ CorePac User Manual rev B

MULCORS

EASA

 Thales Avionics page 70 Réf. CCC/12/006898 – rev. 07

The main characteristics of the C66x™ CorePac are:

Internal component Features

Privilege levels User and Supervisor modes

Caches

Separated 32k Data and Program L1 caches

Unified 1M L2 Cache

All caches can be partially or fully configured as SRAM

LRU replacement policy for all caches

Cache controllers provide coherency mechanisms

Internal DMA channels are provided for data/instruction moves inside the

CorePac

Memory Protection
Access controls on pages. It is implemented on all internal memories and

caches. There is no virtual memory management inside the CorePac.

Shared SRAM controller

Multi-core Shared Memory, controlled by an Extended Memory Controller.

This controller implements memory protection, address translation and pre-

fetching from MSM to L2 or L1 caches.

Bus interface

Configurable bandwidth management implemented for all cache controllers

except L1P cache. Bandwidth management is based on arbitration with

highest priority first and resolving denial of services with timeouts.

Slave DMA controller. It is the slave interface for each CorePac. It receives

incoming transactions from other masters on the interconnect.

 TMS320C66xx™ interconnect: TeraNet™ 9.3.6.3..2

TeraNet™ is a double switch fabric: it is decomposed in Data TeraNet™ and Configuration TeraNet™.

Master and slaves nodes are connected either directly or through internal bridges.

The connection matrix is available in the Reference Manual. For each master, the transactions’ priorities

are configurable. TeraNet™ also provides a large set of tracers that can monitor the activity of each

component.

MULCORS

EASA

 Thales Avionics page 71 Réf. CCC/12/006898 – rev. 07

9.3.6.4. SoC FPGA Hard Processor System: Altera Cyclone® V

To improve FPGA device performance, FPGA manufacturers include core IP in their FPGA devices.

This is called the Hard Processor System (HPS). It includes an ARM MPCore™ implementation

containing cache levels and Snoop Control Unit and AMBA® interfaces.

The peripheral interconnect (equivalent of Corelink™ for ARM MPCore™) has to be synthesized inside

the FPGA. External peripherals (external memory, Ethernet controller, PCIe) are provided inside the

system on chip.

We propose as an example the Cyclone® V from Altera. It integrates two ARM CORTEX®-A9 cores

connected with a Snoop Control Unit (see Figure 12).The FPGA fabric is dedicated to:

 The high-bandwidth interconnect for external DDR
26

, PCIe, Ethernet

 Optional coprocessors and classic FPGA systems

26

 DDR : Double Data Rate (for a Dynamic Random Access Memory)

Figure 12: Altera Cyclone® V SoC FPGA overview
(Source: SoC FPGA Product Overview Advance Information Brief, ref AIB-01017-1.3)

MULCORS

EASA

 Thales Avionics page 72 Réf. CCC/12/006898 – rev. 07

9.4. MULTI-CORE FEATURES REGARDING CERTIFICATION

9.4.1. Introduction

In this section, we plan to provide a list of usual services found in a multicore platform. This list will be

used further to establish a classification of multicore processors. The considered criteria deal with the

processor structure and configurability, but also with the available information and more generally the

manufacturer’s openness toward the certification process.

Some criteria address the technological evolution of the platform’s internal components but are not limited

to multicore processors.

This is the case for optimization mechanisms introduced in the cores to improve performance. Other

criteria are multicore specific. They would be irrelevant for an analogous single-core platform. Those

criteria deal essentially with interconnect and shared component features that implement specific

mechanisms to manage the parallel execution of software on each core.

The main novelty in the use of multi-cores in the Avionics domain is the presence of true parallelism

between different pieces of software executed in the same period of time on different cores. This section

deals with the consequences of such parallelism inside the Airborne Embedded System.

Moreover, the design of multi-core processors followed the recent evolutions of embedded technologies.

Thus additional features may occur, but they would also be relevant in a single-core context.

In the following chapters of this report,

we used the Symbol RGL for Recommended Guide-Line abbreviation

MULCORS

EASA

 Thales Avionics page 73 Réf. CCC/12/006898 – rev. 07

9.4.2. Processor features impact on determinism

This chapter deals with tasks 3 and 4

9.4.2.1. Summary of task 3

Determine whether it is possible to classify the multi-core processors listed in the spread sheet into groups

according to their components, the characteristics of their architectures, their behaviors or other criteria.

The study shall describe the criteria used to classify the processors and why those criteria were selected.

The groups may later be used by EASA to write guidance material that is specific to each group.

9.4.2.2. Summary of task 4

Select - in agreement with EASA - a representative processor from each of the identified processor groups

and conduct a detailed examination of the internal architecture of that processor, identifying the

components involved and the features of the processors, describing their roles in the data and control flow

of the device. Emphasis should again be on features that are not found on most single core processors.

Aspects that are common to many types or groups only need to be described once in the study report, but

any important variations that are specific to a processor or group of processors shall be highlighted.

While identifying and describing processor features, identify which of the components, features or

behaviors of the processor groups are unsuitable for the use of the processors in safety-critical airborne

systems with deterministic behavior and in compliance with the current guidance material listed above. The

features listed in item 2 above and the reasons why they are unsuitable should be described. Any other type

of interference or effect identified by the study that might make a component or architecture unsuitable for

use in certifiable and deterministic safety-critical airborne systems should be identified and described.

9.4.2.3. Interconnect

 Overview 9.4.2.3..1

The Interconnect is the first shared resource between cores. It interleaves the concurrent transactions sent

by the cores to the shared resources like caches, memories and I/O mapped in the address space. Its

architecture has a strong impact on determinism and ensuring partitioning, and on the complexity of worst

case analyses.

An interconnect usually implements the following services:

 Arbitration of incoming requests. This stage depends on several parameters:

o Arbitration rules

o Arbiter internal logic

o Network topology

MULCORS

EASA

 Thales Avionics page 74 Réf. CCC/12/006898 – rev. 07

 Allocation of the physical destination devices when they are duplicated. This is the case for

example when there is more than one MEMORY controller.

 Allocation of a path to the destination. This is necessary when several paths exist between the

source and the destination. This depends on the routing rules.

 Support for atomic operations, hardware locking mechanisms

 Snooping mechanisms for cache coherency

 Inter Processors Interruptions (IPI) for inter-core communications

The Interconnect is in charge of interleaving - when necessary - the transaction flows emitted by the master

nodes (the cores and specific I/O such as Ethernet controllers or DMA engines) directed to slave nodes

(usually MEMORY, shared caches, slave I/O and core slave interface).

An interconnect is usually characterized by:

 A Protocol: The different stages of a transaction processing. Most interconnects protocols are

divided in three phases: arbitration, transfer and termination.

 A Topology: The different point-to-point connections between nodes. The most classic topologies

are:

o Busses: One connection links all masters to all slaves. A bus may be duplicated on a chip

(we talk about multiple busses), thus allowing multiple parallel transfers. A bus may be

pipelined, allowing several transactions to be transferred at the same time in different

pipeline steps. In case of duplicated busses, the arbitration module will allocate one bus to

one master when arbitrating his transaction.

o Crossbars: There is one point to point connection between each master and slave. Thus no

routing is necessary. Usually, a local arbitration module is provided on each slave interface

to interleave incoming accesses.

o Switch fabrics: This is the intermediate topology: point-to-point connections link internal

bridges that are connected to the master and slave interfaces. The arbiter is in charge of

routing the incoming transactions inside this network. This solution is a usual compromise

between the number of point-to-point connections and the interconnect performance through

parallel transaction service.

 An Arbitration policy: The rules that are applied to access sequentially an atomic resource that was

requested by different masters at the same time. Usually, the arbitration policy is designed for good

average performance and granting fair access to the requesters. One example is the Least Recently

Granted arbitration policy that is implemented in Corelink™ (see ARM CORTEX®-A15

MPCore™ interconnect).

Many interconnects are said to be cache coherent. They implement either snooping or shared directory

mechanisms. That means each address accessed is notified to a set of master and slave nodes (usually the

cores, the shared caches and some I/O) that may store a local copy of the concerned data in internal caches.

When this is the case, the corresponding cache lines are invalidated or updated. Section 9.4.2.5 refines

cache coherency mechanisms.

MULCORS

EASA

 Thales Avionics page 75 Réf. CCC/12/006898 – rev. 07

Usually interconnects provide a set of services that ease the implementation of Operating Systems:

 Inter-core communication mechanisms

 Reservation stations for semaphore implementation

 Access to configuration registers for shared services such as clocks, reset...

 Monitoring and debug resources

The interconnect design is a key advantage for the competitiveness of processor manufacturers. Therefore,

it is difficult for Airborne Embedded System providers to get complete information on interconnect

features. Specific NDA
27

s can be established to give access to some confidential documentation. Yet it is

likely that Airborne Embedded System providers will not have access to complete information on the

interconnect designs.

 Interconnect Classification criteria 9.4.2.3..2

Num.
Component

/ service
Criteria Possible values Observations

1
Interconnect

Arbiter

Arbitration rules

documentation is

available

Public

 Under NDA

No

2
Interconnect

Arbiter

The arbiter is

centralized

Yes
Centralized arbiter is a single

point of failure
No

Mixed

3
Interconnect

Arbiter

The arbiter can serve

several transactions

simultaneously

Yes

No

4
Interconnect

Arbiter

The arbitration

policy is

configurable

Yes

No

5
Interconnect

Arbiter

Possible

configurations for

arbitration policy

(subset of)

Round Robin

TDMA arbitration policy is

usually preferred for a better

analyzability.

Fixed priorities, Round

Robin in the same

priority domain

Variable priorities,

Round Robin in the

same priority domain

Least recently granted

policy

27

 NDA : Non-Disclosure Agreement

MULCORS

EASA

 Thales Avionics page 76 Réf. CCC/12/006898 – rev. 07

TDMA
28

Random Arbitration

6
Interconnect

Arbiter

Arbiter internal logic

information is

available

Public

 Under NDA

No

7

Interconnect

Device

Allocation

Device allocation

rules information is

available

Public

 Under NDA

No

8

Interconnect

Device

Allocation

Device allocation is

configurable

Yes

No

9

Interconnect

Device

Allocation

Possible

configurations for

device allocation

(device per device)

(subset of)

Static

The static allocation seems to

be the most relevant for

further analyses

Dynamic with load

balancing

Dynamic with a

specified state machine

Random

10

Interconnect

Network

Topology

Information on the

network topology is

available

Public

 Under NDA

No

11

Interconnect

Network

Topology

Several paths exist

from one node to

another

Yes
The interconnect is easier to

analyze if the answer is no No

12
Interconnect

Routing

Information on the

routing rules is

available

Public

 Under NDA

No

13
Interconnect

Routing

Possible

configurations for

routing rules

(subset of)

Static

Dynamic routing policies may

complicate the determination

of conflicts situations

Dynamic with load

balancing

Dynamic with a

specified state machine

Random

28

 TDMA : Time Division Multiple Access, i.e. access restrictions in predefined periods of time

MULCORS

EASA

 Thales Avionics page 77 Réf. CCC/12/006898 – rev. 07

14
Interconnect

Protocol

Information on the

different kinds of

transactions is

available

Public

 Under NDA

No

15
Interconnect

Protocol

Information on the

relation between

assembly instruction

executed and

transactions sent

available

Public

 Under NDA

No

16

Interconnect

Inter-Processor

Communication

The inter-processors

interruptions can be

blocked by the

interconnect

Yes

 No

No Information

17

Interconnect

Cache

Coherency

Mechanisms

Snooping

mechanism can be

disabled

Yes

 No

No Information

18

Interconnect

Cache

Coherency

Mechanisms

Snooping

mechanism can be

confined to a subset

of cores

Yes This may be useful to confine

non real-time from hard real

time sub-system on the

platform

No

No Information

19

Interconnect

Cores

Synchronization

The interconnect

provides a core

synchronization

mechanism

Yes

 No

No Information

 Interconnect Usage Domain 9.4.2.3..3

The interconnection between cores inside a COTS multi-core processor, also known as the “Interconnect”

is one of the main features, new to this COTS processor technology, which may have a significant impact

on the overall behavior of the processor when used in terms of performance characteristics and potentially

integrity

9.4.2.3..3.1 Objective and Definition

Characterizing the behavior of COTS a multi-core processor interconnect in every possible situation is

technically and humanly difficult. Thus performing an analysis that requires information on the

interconnect behavior may not be possible. We define the Interconnect Usage Domain as a set of

constraints restricting the accesses to the interconnect. The objective is to reach an “acceptable”

characterization of the interconnect behavior in order to enable further analyses.

MULCORS

EASA

 Thales Avionics page 78 Réf. CCC/12/006898 – rev. 07

 RGL n°2

To be able to manage the behavior of the multi-core processor, for each device, an Interconnect Usage

Domain should be defined by the Airborne Embedded System provider and validated with the processor

manufacturer.

The Airborne Embedded System provider shall provide evidence that his knowledge and control on the

Airborne Embedded System is compliant with the Interconnect Usage Domain.

Examples of Interconnect Usage Domain restrictions could be:

 No more than 4 masters can initiate request in the interconnect at the same time

 No more than one DMA engine is allowed to be active at one time

 A shared cache should not be accessed by more than 2 masters at the same time

 A cache coherent memory area will not be shared among more than four nodes

It can be noticed that the Interconnect Usage Domain definition does not include information on

interconnect internal components. Thus it is possible to deal with a “black-box” interconnect, or to perform

analyses without divulging confidential information.

The means to demonstrate compliance with the Interconnect Usage Domain are:

 Restrictions on the Airborne Embedded System Usage Domain

 Hardware or software control mechanisms

 Deep analysis of the interconnect features

 RGL n°3

The Airborne Embedded System provider should implement control mechanisms (Hardware and/or

Software) on interconnect accesses in order to comply with the Interconnect Usage Domain.

The above recommendation can be explained as follows. On one hand, restricting the Airborne Embedded

System Usage Domain to be compliant with the Interconnect Usage Domain may impact software

development processes and worst case performance analyses. On the other hand, a deep analysis of the

interconnect features may not be possible because of the limited information available from the processor

provider. Thus, control mechanisms appear to be the most relevant approach. Their introduction should

have a limited impact on performance.

One important feature dealing with interconnects is the dynamic reconfiguration of its internal components.

Various needs such as to sustain a high bandwidth for a specific core or to save energy on an underused

component may lead to take automatic (and silent) decisions on the interconnect configuration. Such

operations might be incompatible with Avionics usage, especially when their specifications are confidential

and not shared by the processor manufacturer.

MULCORS

EASA

 Thales Avionics page 79 Réf. CCC/12/006898 – rev. 07

9.4.2.3..3.2 Related selection criteria

Nevertheless it is possible to define an Interconnect Usage Domain on black-box interconnects. The

absence of knowledge of the interconnect internal features may lead to a pessimistic definition. The

extreme case occurs with black-box interconnects.

Here, only one master is allowed to request the interconnect at one time, and has the exclusive access

during its transaction service.

Thales proposes to weight the criteria regarding the impact of these criteria on the Avionics Embedded

Systems based on the different ED-80/DO-254 DAL levels of these Embedded Systems. This weighting

can be challenged by the EASA.

In order to allow some parallelism in the Interconnect Usage Domain, we recommend that the processor

selection takes into account the following criteria:

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

Information on

the interconnect

behavior is

available

The interconnect protocol

is documented

3 3 Information on the interconnect

protocol is useful to determine

how transactions are handled by

the interconnect. For instance,

some specific error codes may

exist, transactions may be

decomposed.

The interconnect protocol

implementation allows

transactions reordering

1 1 If it is the case, then transactions

reordering increases the

difficulty to characterize the

interconnect protocol.

See RGL n°4

It is possible to identify

from assembly code or

with an embedded spy all

transactions sent on the

interconnect

2 1 Such information may be useful

to analyze the interconnect

service of optimized assembly

instructions.

Multiple transactions may be

sent to execute a single

instruction.

MULCORS

EASA

 Thales Avionics page 80 Réf. CCC/12/006898 – rev. 07

Arbitration rules

description is available

3 2 This piece of information allows

a worst case arbitration situation

to be determined.

There are two kinds of

arbitration policies: the fair and

the unfair ones.

 The first one serves all

masters trying to provide an

equal access for each.

 The second one is based on

priority assignments. Thus

high priority masters are

less perturbed by the

activities of other cores.

Routing and device

allocation rules

description are available

2 2 This criteria is relevant when

multiple paths exist and/or when

accessed resources are

replicated.

This may be the case for shared

caches and memory controllers.

Dynamic allocations rules

increase the complexity of

interconnect characterization.

See RGL n°5

All information on

interconnects features

configuration is available

3 2 Having complete information on

the interconnect configurations

has many advantages.

It decreases the risks to have

hidden functionality, and it gives

the opportunity to optimize the

Interconnect Usage Domain

definition.

This is less critical for lower

DAL, the main characteristics of

these features can be determined

using bench software.

Configuration can’t be

changed dynamically and

silently

3 3 Regarding safety, it is

recommended to use the

interconnect in a stable

configuration under the

Interconnect Usage Domain

restrictions.

MULCORS

EASA

 Thales Avionics page 81 Réf. CCC/12/006898 – rev. 07

This ensures simpler

interconnect behavior

determination during further

analyses.

See RGL n°5

Information on

the interconnect

design is

available

The interconnect

topology is documented

3 2 This criterion is important to

determine which parallel paths

may exist in the interconnect.

If the arbitration resources allow

it, those paths may be authorized

in the Interconnect Usage

Domain.

For low DALs, this topology can

be analyzed using external

software benches.

The arbiter is centralized

or distributed

1 / 3 1 / 2 A partially or fully centralized

arbiter complicates the

characterization of interconnect

behavior.

Indeed, it may enable situations

in which several masters

targeting different slaves have

sequential access to the

arbitration resource.

Nevertheless, a centralized

arbitrator remains necessary

when the interconnect is not a

full crossbar to avoid contention

between cores and between cores

and shared resources.

See RGL n°6

The manufacturer has

stated that the

interconnect embeds no

hidden mechanisms

3 3 This limits the risks of having

hidden functionalities that

weaken computing platform

integrity and other requirements.

The interconnect has

internal waiting queues

and contention

mechanisms

3 2 It may bring additional difficulty

to characterize the interconnect

behavior.

Weights: 1: informative _ 2: Nice to have (Should) _ 3: Mandatory (Shall)

MULCORS

EASA

 Thales Avionics page 82 Réf. CCC/12/006898 – rev. 07

 RGL n°4

Transactions reordering increases the difficulty to characterize the interconnect protocol, we recommend to

disable interconnect reordering mechanisms to o ensure a better assurance in the transaction management.

 RGL n°5

For Safety, we recommend to use the interconnect in a stable configuration under the Interconnect Usage

Domain restrictions that means the Airborne Embedded System provider should obtain from processor

manufacturer assurances that the interconnect configuration cannot be changed dynamically and silently.

 RGL n°6

To avoid contention between cores, and between cores and shared resources, we recommend to use

centralized managed arbitration when the interconnect is not a full crossbar.

 Interconnect features regarding multi-core processor integrity 9.4.2.3..4

9.4.2.3..4.1 Integrity of transactions services in the interconnect

Failures occurring during transaction services may have an impact on the execution integrity of software on

different cores if they are not mitigated (see RGL n°7). We can consider for instance the following

failures:

 Silent loss of a transaction. Here, ‘silent’ means without signaling an error.

 Silent transaction corruption due to a transaction collision or an external event (such as a SEU
29

).

In many cases, such events would lead to faulty execution of the embedded software without raising any

errors (failures are silent). During the certification process, the Airborne Embedded System provider has to

provide evidence that this kind of faults cannot occur on the Airborne Embedded System. This is the

interconnect integrity analysis. This analysis should be performed jointly by the Airborne Embedded

System provider and the processor manufacturer inside the Interconnect Usage Domain.

 RGL n°7

We recommend that the Interconnect Usage Domain determination should contain an Interconnect

Integrity Analysis performed under Airborne Embedded System Provider responsibility with the

assistance of Processor Manufacturer.

The Interconnect Usage Domain determination should enable an interconnect integrity analysis with

limited the technical and human effort.

29

 SEU : Single Event Upset

MULCORS

EASA

 Thales Avionics page 83 Réf. CCC/12/006898 – rev. 07

9.4.2.3..4.2 Related selection criteria

We can derive the following selection and assessment criteria:

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

Information on

the interconnect

integrity is

available

The interconnect protocol

is transaction lossless

3 3 This becomes a killing criterion

if the interconnect can lose

transactions silently

See RGL n°8

The interconnect embeds

transaction corruption

detection mechanisms,

such as parity or ECC for

eventual internal storage

2 2 This is a classic fault detection

means for internal storage. Yet

some internal storage resources

may be hidden from the platform

provider.

In case of internal failure,

the interconnect can

propagate an error to the

concerned core and/or an

external monitor

3 2 If it is the case, it might be

possible to consider the

interconnect integrity toward a

particular core. In case of failure,

if no propagation occurs, only

the concerned core could be

sanctioned. This is a means to

increase reliability at platform

level.

Weights: 1: informative

 2: Nice to have (Should)

 3: Mandatory (Shall)

 RGL n°8

We recommend that the Interconnect Usage Domain determination should contain analysis regarding the

interconnect protocol that shall provide lossless transactions.

 Interconnect features regarding Worst Case Execution Time calculus 9.4.2.3..5

The interconnect design and behavior are determining factors for WCET analyses. Indeed, a measured

execution time in a worst case scenario has to be corrected with parameters that take into account the

timing variability of Airborne Embedded System services including interconnect accesses. However,

MULCORS

EASA

 Thales Avionics page 84 Réf. CCC/12/006898 – rev. 07

occurrences of inter-core conflicts introduce additional variability in the durations of transaction services.

Determining correction parameters for interconnects requests requires an estimation of an upper bound on

their value.

The presence of conflicting situations depends on:

 The arbitration rules for incoming requests

 The arbiter topology (centralized or distributed) and its internal logic

 The interconnect topology that determines the parallel paths

 The devices allocation rules that are used when a resource is duplicated, such as a DDR controller

 The snooping traffic that ensures cache coherency

As explained in section 9.4.2.3..3 dealing with the interconnect usage domain, determining inter-core

conflict situations in a general case is technically and humanly difficult. When the conflicting situation is

complex (for instance a conflict occurring between many simultaneous transactions), it may be difficult to

estimate tightly the timing variability of each transaction service so pessimistic hypotheses have to be done.

The Interconnect Usage Domain may be used to bring the complexity of this analysis back to an acceptable

level.

 RGL n°9

The Interconnect Usage Domain definition should limit the number and the complexity of inter-core

conflict situations in order to give tighter bounds for their impact on the timing variability of transaction

services.

 RGL n°10

The Interconnect Usage Domain definition should prevent all occurrences of undesirable conflicts by

taking into account pessimistic timing hypothesis when it is not possible to determine bounds on the timing

variability on transaction services.

 RGL n°11

We recommend that observations and tests performed by the Airborne Embedded System Provider on

timing variability on transactions services should be validated by the processor manufacturer according to

the Interconnect Usage Domain hypothesis.

MULCORS

EASA

 Thales Avionics page 85 Réf. CCC/12/006898 – rev. 07

9.4.2.3..5.1 Related selection criteria

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

Information on

the interconnect

worst case

behavior is

available

The timing variability of

a transaction service can

be bounded without

taking into account

conflict situations

3 2 This is clearly a killing criterion.

The absence of conflicts is the

simplest case in which an

interconnect is used.

The timing variability of

a transaction service can

be bounded taking into

account specific conflict

situations

2 2 This criterion is weaker than the

previous one. It is required to

authorize some conflicting

situations in the Interconnect

Usage Domain so that its

definition is less restrictive.

Transaction

service timing

variability can be

measured

The platform embeds

hardware assist for

measuring in each core

the time variability of

transaction services

2 2 Using internal hardware

components, such as integrated

timers is mandatory to perform

fine grain measures for

transaction service timing

variability.

The platform embeds

internal monitoring

mechanisms that can

observe conflicts inside

the interconnect

2 2 Having additional monitoring

mechanisms in the interconnect

is a good feature. Their use may

help to ensure the coverage of

conflicting situations was

complete enough.

The processor

manufacturer is able to

confirm observations on

worst case timing

variability for transaction

service under

Interconnect Usage

Domain restrictions.

3 2 The lack of information on

interconnect design has to be

filled by strong collaboration

between the platform provider

and the manufacturer. Absence

of such collaboration may lead to

uncovered situations that could

invalidate the analysis.

Weights: 1: informative

 2: Nice to have (Should)

 3: Mandatory (Shall)

MULCORS

EASA

 Thales Avionics page 86 Réf. CCC/12/006898 – rev. 07

 Interconnect features regarding Robust Partitioning insurance 9.4.2.3..6

Providing Robust Partitioning on a multi-core Airborne Embedded System raises issues that depend on the

partition deployment. We consider the following cases:

 At most one partition may be activated at one time on the Airborne Embedded Equipment.

 Several partitions may be activated simultaneously on different cores. For simplicity, we can

consider that the Airborne Embedded Equipment “system software” is seen as a partition (as its

execution shall be protected from Airborne Software)

The first case is closed to Robust Partitioning enforcement on single-core Airborne Embedded Systems.

Existing guidelines such as ARINC 653 Time and Space partitioning seem relevant. A more detailed

description is provided in section 9.5.3.1..3.3 that deals with Symmetrical Multi-Processing.

The second case is more complex. Indeed, concurrent transactions coming from different cores may be

associated with different partitions. Inter-core conflicts occurring during transaction collisions introduce

couplings between embedded partitions. Interference (i.e. occurrences of fault propagation) occurs

through sequences of inter-core conflicts.

To ensure Robust partitioning, conflicting situations have to be analyzed. Such an analysis can be

performed under the restrictions imposed by the Interconnect Usage Domain so that the set of conflicting

situations is limited down to an acceptable level. Identified conflict situations must be analyzed to

determine whether the timing variability introduced by the conflict can be bounded, and if that bound is

acceptable regarding the partition’s model of faults. This feature is close to correction parameters definition

for WCET calculus. Thus RGL n°9, RGL n°10 and RGL n°11 are applicable.

9.4.2.3..6.1 Related selection criteria

The selection criteria proposed in section 9.4.2.3..5.1 for WCET calculus are relevant for Robust

Partitioning enforcement.

9.4.2.4. Shared caches

The use of shared caches is classic outside the Embedded Aircraft Systems. Indeed, it allows the use of a

large cache area that could not be integrated (for costs and size reasons) inside each core. Significant

performance increases can be expected from the use of a shared cache. Usually, it is completed with one or

two levels of private caches inside each core.

The use of a shared cache in Embedded Aircraft Systems requires a solution to the following problems:

 Shared cache content prediction. This feature addresses WCET calculability and robust

partitioning requirements. We develop this feature in the next section.

MULCORS

EASA

 Thales Avionics page 87 Réf. CCC/12/006898 – rev. 07

 Cache content integrity. As for private caches, a shared cache is usually a large cache in which

SEU/MBU
30

 are likely to occur. Such events have to be mitigated following recommendations

provided in section 9.6.

 Concurrent accesses impact. We consider that potential restrictions on concurrent accesses to

shared cache have to appear in the Interconnect Usage Domain in the same way as concurrent

accesses to shared memory.

Several cache organizations exist, including:

 Fully associative: Each memory row may be stored anywhere in the cache.

 N-way set associative cache: Each memory row may be stored in any way of some specific sets of

cache lines.

 Direct mapped cache: Each memory row may be stored in a single cache line.

Fully associative and N-way associative caches implement a replacement policy that has to be documented.

Classic replacement policies are:

 Least Recently Used

 Pseudo Least Recently Used:

 Most Recently Used

 First In First Out

 Random

Modern COTS processors usually implement one or more of those replacement policies with some

optimizations, for instance to improve streams processing.

 Cache Classification criteria 9.4.2.4..1

NU

M

COMPONENT/SER

VICE
CRITERIA POSSIBLE VALUES OBSERVATIONS

37
SHARED CACHE

ARCHITECTURE

THE SHARED

CACHE HAS

SEVERAL READ AND

WRITE PORTS

YES USUALLY, SHARED

CACHES HAVE MORE

READ THAN WRITE

PORTS

NO

NO INFORMATION

38
SHARED CACHE

PARTITIONING

IT IS POSSIBLE TO

PARTITION A

SHARED CACHE PER

WAY

YES

 NO

NO INFORMATION

39
SHARED CACHE

PARTITIONING

IT IS POSSIBLE TO

PARTITION A

SHARED CACHE PER

LINES

YES IF YES, THIS

APPROACH IS

KNOWN AS THE MOST

EFFICIENT

NO

NO INFORMATION

40 SHARED CACHE IT IS POSSIBLE TO YES IF YES, THIS

30

 MBU : Multiple Bits Upset

MULCORS

EASA

 Thales Avionics page 88 Réf. CCC/12/006898 – rev. 07

SRAM BEHAVIOR CONFIGURE A

SHARED CACHE IN

SRAM

NO REMOVES ONE

SOURCE OF

INDETERMINISM NO INFORMATION

41
SHARED CACHE

CACHE LOCKING

IT IS POSSIBLE FOR

ONE CORE TO LOCK

SOME OF ITS

CONTENT IN THE

CACHE

YES

NO

NO INFORMATION

42
SHARED CACHE

CACHE LOCKING

IT IS POSSIBLE FOR

ONE CORE TO LOCK

SOME OF ANOTHER

CORE’S CONTENT IN

THE CACHE

YES IF YES, THIS IS A

VIOLATION OF

ROBUST

PARTITIONING

NO

NO INFORMATION

 Content prediction features 9.4.2.4..2

In a general case, shared cache content prediction is only possible when we have a full visibility into the

software executed on each core. It can be noticed that cache content prediction is a means to give a tighter

estimation of the WCET for some embedded software.

The absence of reliable information on cache content may lead to pessimistic hypotheses in WCET

determination.

Usually, the exact cache content prediction is not achievable for a large cache -shared or private- because

of the combinatorial explosion entailed by the multiple execution paths. Current methods aim at

determining an Abstract Cache State. This is an approximated representation of the possible cache states

(the possible contents of each cache lines) during the possible executions of the embedded software.

Cache content prediction algorithms (for private and shared caches) have to take into account the following

features:

 Instruction cache content prediction. This is possible when execution paths in the software have

been explored.

 Data cache content prediction. This feature is more difficult because load/store addresses may be

dynamically determined. Thus the set of read/write addresses has to be approximated first.

 Instruction/Data conflict prediction. This feature occurs in unified caches

Moreover, cache content prediction algorithms supporting shared caches have to address the following

features:

 Cache conflict prediction. That means identification of situations where one core loads

data/instructions in the shared cache that will be further invalidated by another core.

 Shared code (especially shared libraries, OS and language runtimes) impact determination. This is

important to estimate how far shared code loading by one core will be profitable to other cores.

MULCORS

EASA

 Thales Avionics page 89 Réf. CCC/12/006898 – rev. 07

The interested reader may refer to (Hardy, Analyse pire cas pour processeur multi-coeurs disposant de

caches partagés, 2010) for a detailed algorithm. It can be noticed that shared cache content prediction

algorithms may offer better results when the programmer explicitly introduces synchronization points

between each core in its program. However, to the best of our knowledge, such algorithms are not yet

deployed in the industrial world.

The use of shared caches in Embedded Aircraft Systems seems to be a long-term solution. Hence there is a

lack of background on their use in hard real-time systems, thus we do not provide specific

recommendations on their usage “as a shared cache” (that means without any control on its content).

 Classic cache configurations 9.4.2.4..3

We highlight here two classic mechanisms or configurations that are usually available for shared caches:

 Cache partitioning

 Cache configuration as SRAM
31

Those mechanisms may address the problem of cache content prediction even when the programmer has no

visibility into the software deployed in parallel on the Airborne Embedded System.

9.4.2.4..3.1 Cache partitioning

It may be possible to allocate specific areas of a shared cache to one core. This is called cache partitioning.

In an N-way associative cache, this partitioning may be enforced over sets (all ways of one set are reserved

for one core), or over ways (one way of all sets is reserved for one core). In both cases, the concerned core

is allowed to allocate data/instructions in its reserved cache area. An adequate configuration of cache

partitioning may be enforced to allocate disjoint sections of a shared cache to each core.

It can be noticed that a partitioned cache will not exactly behave like N private caches. Indeed, cache

partitioning deals with cache line allocations: a cache line can be loaded in one core’s partition only if it

requests it. It may be later accessed, read and modified by other cores, given that their memory mapping

allows them to access the concerned addresses.

9.4.2.4..3.2 Cache use as SRAM

When a shared cache may be configured partially or totally as SRAM, it simulates the behavior of a

scratchpad. Its content will be fully managed by software. Predicting cache content in this situation means

identifying cache management requests explicitly initiated by software.

Yet each core may initiate cache management requests. A coherent management of the shared cache has to

be enforced.

31

 SRAM : Static Random Access Memory

MULCORS

EASA

 Thales Avionics page 90 Réf. CCC/12/006898 – rev. 07

 RGL n°12

We recommend that robust partitioning for shared cache should be enforced by defining hardware

configuration for cache partitioning mechanisms or should be enforced by software management

(hypervisor for example) if shared cache is configured as SRAM when partitioned Operating System is

deployed simultaneously on different cores and use shared cache.

 Corresponding selection criteria 9.4.2.4..4

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

Information on

the cache

behavior is

available

The available

replacement policies are

documented

3 2 This criterion is mandatory if

cache content has to be predicted

with a cache not configured as

SRAM.

Optimized cache replacement

policies may be proprietary.

It exist a cache prediction

algorithm that supports at

least one replacement

policy

3 2 This may raise a feature when

the cache replacement policy has

been optimized to accelerate

some operations.

The cache can serve

multiple transactions in

parallel

1 1 This information may be useful

during the Interconnect Usage

Domain definition – if it is not

available then margin will be

took for the usage Domain

Restrictive cache

configurations

are available

The cache can be

partitioned per set and/or

per way

2 2 This information may be useful

to simulate the behavior of

private caches inside a private

cache. Cache content prediction

may be easier.

The cache can be

configured partially or

totally as a SRAM

1 1 This configuration may be useful

when the cache content has to be

finely managed by software.

Cache disabling

is possible

It is possible to disable

the shared cache
3 2 It should be demanded to turn off

a shared cache when the

platform does not need its

performance gain or when

behavior can’t be managed.

Weights: 1: informative 2: Nice to have 3: Mandatory

MULCORS

EASA

 Thales Avionics page 91 Réf. CCC/12/006898 – rev. 07

9.4.2.5. Cache coherency mechanisms

Cache coherency mechanisms are required in architecture that integrates several storage devices hosting

one same data. Usually it concerns the cores internal caches, shared caches and the main memory, but it

may also be I/O internal cache memories. Modifying the data in one place shall signal the other resources

so that their data is marked as deprecated. One centralized storage resource – most of the time the main

memory – maintains an up-to-date version of the data.

There are two families of coherency protocols:

 Invalidate protocols:

o The accessed cache line is marked as invalidated in all locations. Further accesses will miss

and require a load to the main memory. Moreover, the invalidated cache line may be

selected first by the cache replacement policy.

o This class of protocols is usually easier to implement and offers better performances (cache

line invalidation is cheaper than cache line update). However in case of multiple reload it

may entail additional traffic (N reloads compared to one update).

 Update protocols:

o The accessed cache line is updated. Then an update request is broadcasted to all nodes. The

ones containing the cache line are automatically updated. Further access will hit

transparently.

o This class of protocols has an advantage: a cache access will always hit without requesting

the interconnect, thus traffic on the interconnect may be easier to control.

We usually encounter Invalidate protocols in today’s architectures associated with MESI protocol that

guarantee no modification for multiple valid data in cache.

Implementing a cache coherence protocol can be done in a centralized or a distributed way. Centralized

cache coherency is called Directory-based coherence. Memory areas that are marked as shared are

referenced by a dedicated component, the common directory. This component maintains the list of nodes

containing a cache line. It filters memory accesses and signals the corresponding nodes of an access.

Conversely, distributed cache coherency is called Snooping-based coherency. Each node spies the address

busses and filters accessed addresses. When they notice a conflict, they signal themselves (usually

invalidate local copies).

Common directories usage entails an additional duration on transactions service. Yet they limit the

additional traffic only to nodes that actually require cache coherency requests. Globally, snooping requests

introduce a higher traffic (snoops are propagated to all nodes without determining whether they require

them or not) but memory transactions are served faster, as long as the interconnect has enough bandwidth

to propagate correctly this traffic.

In an Embedded Aircraft Systems usage, cache coherency mainly impacts the timing variability of

transactions service inside the interconnect and inside each core. This impacts the WCET calculability of

embedded software and Robust Partitioning insurance. The usage and limitations on cache coherency

MULCORS

EASA

 Thales Avionics page 92 Réf. CCC/12/006898 – rev. 07

mechanisms may be addressed in the Interconnect Usage Domain. Many platforms offer to disable and/or

to confine cache coherency traffic but do not guarantee any data coherency. The software may be in charge

of maintaining it itself under some limitations.

It can also be noticed that snoops management inside each core may use some bandwidth for internal

caches accesses and thus slow down the core accesses to its private caches.

 Corresponding selection criteria 9.4.2.5..1

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

Information on

the cache

coherency

management is

available

Cache coherency

mechanisms should be

disabled

3 1 Cache coherency may be useless,

especially in the case of

partitioned systems when there is

no shared data or area between

cores.

See RGL n°13

Cache coherency traffic

may be partitioned inside

a subset of nodes on the

platform

2 1 This criterion is interesting

especially when we have to

provide some cache coherency

between some cores executing

the same airborne software

without impacting the other

cores.

Information on

the cache

coherency impact

on timing

analyses is

available

It is possible to provide

acceptable bounds for the

impact of cache

coherency traffic on core

transactions in private

caches

3 2 This criterion is mandatory when

cache coherency is activated to

be able to manage timing impact

on core transaction and so

determinism.

See RGL n°14

It is possible to provide

acceptable bounds for the

impact of cache

coherency traffic on

transactions service in the

interconnect

3 2 This criterion is mandatory when

cache coherency is activated to

be able to manage timing impact

on transaction and so

determinism

See RGL n°15

Weights: 1: informative

 2: Nice to have

 3: Mandatory

MULCORS

EASA

 Thales Avionics page 93 Réf. CCC/12/006898 – rev. 07

 RGL n°13

We recommend, preventing undesirable behavior, disabling cache coherency mechanism when partitioned

Operating Systems is deployed on each core with no shared memory between cores.

 RGL n°14

We recommend, when cache coherency is enable, bounding the timing variability when core access to its

private cache - finding upper bounds on cache coherency traffic impact -.

 RGL n°15

We recommend confining cache coherency traffic between the concerned cores and peripherals that require

it for the correct execution of embedded software.

9.4.2.6. Shared services

The Airborne Embedded Equipment is in charge of providing shared services among the cores. Usually, we

encounter the following ones:

 Interrupt generation and routing to cores

 Core and processor clock configurations

 Timer configurations

 Watchdog configurations

 Power supply and reset

 Support for atomic operations

 Shared Services Classification criteria 9.4.2.6..1

Num
Component/

service
Criteria Possible values Observations

20
Interrupt

controller

Access restriction to the

interrupt controller for the

supervisor is possible

Yes

 no

No information

21 Clocking
Each core has its private clock

source or PLL circuit

Yes

No

MULCORS

EASA

 Thales Avionics page 94 Réf. CCC/12/006898 – rev. 07

No information

22 Clocking
There is a single clock for all

cores

Yes

 no

No information

23 Clocking

There is a protection

mechanism that prevent a PLL

configuration to be corrupted at

runtime

Yes

 no

No information

24 Clocking

The mapping between

available PLL and cores is

configurable

Yes

 no

No information

25 Power supply

The power source of each core

can be protected from other

cores corruption

Yes

 no

No information

26 Power supply
The core can be halted by other

cores

Yes
If yes, a protection

mechanism must be

proposed

no

No information

27 Power supply
The core can be set in sleep

mode by other cores

Yes
If yes, a protection

mechanism must be

proposed

no

No information

28
Timer

facilities
Each core has a private timer

Yes

 no

No information

29
Timer

facilities

Timers can be fed by the same

clock source

Yes

 no

No information

30
Timer

facilities

Timers can be fed by an

external clock source

Yes

 no

No information

31
Timer

facilities
Timers can generate interrupts

Yes

 no

No information

32
Timer

facilities

Timers have their own clock

circuit

Yes

no

MULCORS

EASA

 Thales Avionics page 95 Réf. CCC/12/006898 – rev. 07

No information

33
Reset

facilities

It is possible to perform a reset

on one core

Yes

 no

No information

34
Reset

facilities
A core can reset another core

Yes
If yes, a protection

mechanism must be

introduced

no

No information

35
Watchdog

timers

There is one watchdog timer

per core

Yes

 no

No information

36
Watchdog

timers

It is possible to restrict a

watchdog configuration to one

core

Yes
If no, this is a source of

indeterminism
no

No information

All those services can be configured by all cores, provided their memory mapping allows them to access

the adequate configuration registers. In the Embedded Aircraft Systems context, this may weaken Robust

Partitioning and execution integrity insurance. Indeed, a core whose software execution relies on such

services may have its behavior changed by an alteration of those services.

Configuration registers that are located in the shared space are mapped in the address space. Thus software

accesses are filtered by the MMU. An adequate configuration of the MMU may restrict those accesses to

Airborne Embedded System services with supervisor privileges. However, non-consistent configurations

among supervisors executed on each cores may still lead to faulty execution of the embedded software.

 RGL n°16

We recommend restricting to hypervisor or supervisor (when hypervisor doesn’t exist) level the

configuration of shared services. Multiple instances of privileged software running on each core should

rely on a single static configuration that is determined at design time.

The case of hardware support for atomic operations (also named reservation stations) is particular. Their

classical usage, for semaphore implementation, consists in performing two consecutive accesses that

succeed only if they are not interleaved with one or more others.

When concurrent accesses occur to the same time, one or more operation may fail. Some extreme situations

that might lead to a high number of retries, or even to deadlocks, would have to be studied to allow the use

of reservation stations.

MULCORS

EASA

 Thales Avionics page 96 Réf. CCC/12/006898 – rev. 07

 RGL n°17

We recommend that implementation of semaphores should take in account potential deadlocks due to

shared reservation stations.

 Corresponding selection criteria 9.4.2.6..2

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

It is possible to

restrict shared

services

configuration to

a high privilege

level

Accesses to the shared

interrupt controller,

PLL
32

, shared watchdog,

power sources... can be

restricted to the

supervisor/hypervisor

without impacting

accesses to other

peripherals

3 2 An adequate configuration of the

MMU may provide such

restriction. Yet the mapping

should not entail access

restrictions on other peripherals.

See RGL n°16

One core cannot reset

another core at user

privilege level

3 3 Reset signals can often be raised

following various events. Even if

explicit resets can be restricted to

privileged software, it shall be

determined whether some errors

or events triggered by user-level

operations might entail reset

signals.

See RGL n°18

Weights: 1: informative

 2: Nice to have

 3: Mandatory

 RGL n°18

We recommend, in multi-core configurations, not to authorize one core, under USER privilege level, to be

able to reset another core. Only Hypervisor or Supervisor (if hypervisor doesn’t exist) have the

authorization to perform this reset.

32

 PLL : Phase Locked Loop

MULCORS

EASA

 Thales Avionics page 97 Réf. CCC/12/006898 – rev. 07

9.4.2.7. Cores

The cores support the execution of multiple software instances in parallel. They may (explicitly) interact

within two mechanisms:

 Inter-core interrupts

 Shared memory

In the Embedded Aircraft Systems context, the use of inter-core interrupts (point-to-point or broadcast)

might be the same as any external interrupt. It is acceptable under some conditions including (but not

restricted to):

 As a protection mechanism (a core can interrupt another core if it detects a faulty execution inside

it)

 When the destination core is actively waiting for being interrupted.

 RGL n°19

We recommend that:

1. The use of inter-core interrupts should be restricted to supervisor or hypervisor.

2. The conditions that rule the use of inter-core interrupts should be documented.

3. The Airborne Embedded System provider should provide evidence that all instances of privileged

software deployed on each cores comply with these rules.

Memory mapping is defined in the Memory Management Unit (MMU). Multi-core platforms usually

embed one MMU per core. Thus, memory mapping definition is distributed among the cores. This raises

the feature of coherency maintenance between all MMU.

A non-coherent configuration may weaken Robust Partitioning. However, platforms that provide

centralized memory protection services may be protected against non-coherent MMU configurations.

 RGL n°20

We recommend that the configuration of MMUs should be performed only at the Hypervisor or Supervisor

level – when the Hypervisor does not exist – in order to prove that spatial isolation enforcement relies on a

single configuration for the whole platform.

MULCORS

EASA

 Thales Avionics page 98 Réf. CCC/12/006898 – rev. 07

 Corresponding selection criteria 9.4.2.7..1

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

Inter-core

interrupts

emission can be

controlled

Inter-core interrupts

generation can be

restricted to a supervisor

or a hypervisor

3 3 This criterion is mandatory to

prevent inter-core interrupts

from being emitted by the

airborne software in an

unpredictable way

See RGL n°19

Memory

mapping can be

protected against

non-coherent

configurations

There is a centralized

service of memory

protection unit

2 1 Having a centralized protection

mitigates the risk of non-

coherent configuration of

distributer memory protection

mechanisms.

See RGL n°20

Weights: 1: informative 2: Nice to have 3: Mandatory

9.4.2.8. Peripherals

Several features dealing with shared peripherals have to be considered. We distinguish features concerning

the main memory from those concerning I/O.

Sharing the main memory means sharing the physical storage resources and the memory controllers. The

storage resource can be partitioned when necessary: disjoint memory areas can be allocated to each core

(this is space partitioning). We do not consider this feature in this section. Sharing accesses to the memory

controllers may in some cases increase the timing variability of a transaction with a factor higher than the

number of accessing masters (see (Moscibroda & Mutlu, 2007) for an illustration: on a dual-core platform,

a task is slow downed with a factor of 2.9 while the concurrent task is not).

These side-effects are due to the internal structure of a DDR. It contains several banks, each bank having

internal read/write buffers, internal scheduling optimized for contiguous read/write transactions. Incoming

transactions have been interleaved in the interconnect. Thus, contiguous accesses sent by a core may not be

contiguously serviced inside the memory controller. This phenomenon cannot be controlled by the

software. Thus its worst case timing variability has to be determined and applied for each memory

transaction.

MULCORS

EASA

 Thales Avionics page 99 Réf. CCC/12/006898 – rev. 07

 RGL n°21

We recommend that the Interconnect Usage Domain should specify atomic access patterns to the main

memory to provide tighter bounds on timing variability of memory transactions,.

We recommend that Worst Case Response Time should be determined for these patterns and Memory

transactions should be encapsulated inside them.

Shared I/O features dealing with configuration are similar to shared services configuration. Additional

features occur when the cores concurrently perform the following actions:

 Access simultaneously read and/or write buffers. Here classic rules of time and space partitioning

can apply: storage areas have to be partitioned with some component controlling their access, and

when it is not possible ensure that concurrent accesses will occur in disjoint time windows.

 Initiate specific protocols operations. Here, uninterrupted access is required during the protocol

execution to be able to fulfill correctly the concerned protocol.

Like shared services, concurrent accesses to shared I/O may occur simultaneously from different cores. Yet

their use is more complex then configuration of shared services. Some I/O are accessed according to a

protocol, others are accessed from a read and/or write buffer. Thus atomic access patterns have to be

ensured.

 RGL n°22

We recommend that accesses to shared I/O dealing with configuration should be restricted to the

Hypervisor or Supervisor level – if the Hypervisor level does not exists – access patterns to these I/O

should be documented in the Interconnect Usage Domain.

Classically, shared I/O’s accesses are managed by the supervisor or the hypervisor. The three existing

management methods are:

 I/O emulation. On each core, the supervisor/hypervisor emulates a virtualized I/O interface. It is in

charge of propagating I/O accesses to the physical I/O. This interface may be a simple read/write

buffer (the supervisor/hypervisor implements in its own driver the corresponding protocols), or a

complete I/O (the supervisor/hypervisor leaves I/O management to the Airborne Software)

 I/O direct access. On each core, the supervisor/hypervisor configures the MMU to enable direct I/O

accesses. The supervisor/hypervisor does not intercept further accesses.

 I/O manager core. One core is dedicated to I/O transactions. For the remaining cores, I/O

transactions are encapsulated inside inter-core messages that are propagated through a

communication service.

Today’s experience in shared I/O management is not sufficient to recommend one method rather than the

two others for an Embedded Aircraft Systems usage.

MULCORS

EASA

 Thales Avionics page 100 Réf. CCC/12/006898 – rev. 07

 Corresponding selection criteria 9.4.2.8..1

Criteria Sub-criteria Weight

for

DAL

A/B

Weight

for

DAL

C/D

Observations

Memory

mapping allows

I/O per I/O

isolation

All I/O may be accessed

in different pages so that

I/O management can be

partitioned by the MMU

2 1 It is preferable to have a control

I/O per I/O.

Yet this is not mandatory since

I/O control is provided by

platform software.

Weights: 1: informative

 2: Nice to have

 3: Mandatory

MULCORS

EASA

 Thales Avionics page 101 Réf. CCC/12/006898 – rev. 07

9.5. SOFTWARE ASPECTS

This chapter deals with tasks 7 and 8

9.5.1. Summary of task 7

In combination with the steps listed above, identify and analyze the software architectures that may be used

in combination with the hardware of each processor group and, if possible, classify those software

architectures into groups.

Criteria for this grouping might include such factors as whether symmetric, asymmetric or ‘bare-metal’

multi-processing would be used, whether there are suitable certifiable operating systems that may be

acquired and incorporated to execute on the processor and for which types of processing the processors

would be best suited.

The study shall identify whether there are particular ways to allocate tasks or parts of tasks to the processor

cores that would be most safe and effective for each type of processor and / or operating system, e.g.

allocating a single critical task to each processor.

9.5.2. Summary of task 8

Identify the methods, tools, languages and operating systems that would be most suitable for specification,

development and implementation of safety-critical software to execute in parallel with robust partitioning

on the representative processors and any software / COTS IP that they include.

This chapter deals with multi-cores features related to software execution on a multi-core processor. We

focus on Airborne Software in general and platform software (that is granted the supervisor and/or

hypervisor privileges) in the case of partitioned systems, especially IMA systems.

9.5.3. Airborne Software deployment on a multi-core platform

9.5.3.1. Airborne Software execution on several cores

Executing an Airborne Software on several cores on a multi-core platform is possible when it is

implemented under parallel schemes. Two models are possible:

 Multitasking: The Airborne Software is decomposed in parallelizable tasks that will be activated by

a scheduler. This model is implemented in all operating systems that support the execution of

several Airborne Software.

 Client-Server: Some services are implemented in servers that are deployed on specific cores. The

Airborne Software, executed on another core, requests those servers as a client. This model is

classically used in distributed Airborne Software and relies on Remote Procedure Calls techniques.

Intergiciels like CORBA propose services to ease the development of such Airborne Software, for

instance messages encapsulation to facilitate method and arguments passing. Some of them have

been designed to provide real-time performances.

MULCORS

EASA

 Thales Avionics page 102 Réf. CCC/12/006898 – rev. 07

 Multitasks scheduling features 9.5.3.1..1

The classic approach for a multitasked system is the hierarchical model based on processes (or partition)

and threads (we use UNIX terminology. In ARINC 653, the equivalent components are partitions and

processes). Processes (or partitions) are executed from isolated memory areas. Inside a process, one or

more threads are executed in the same address space. The use of threads is quite flexible in parallel

programming because it enables the definition of shared objects that can directly be accessed by the

different threads.

For simplicity, we talk about tasks rather than processes and threads. Usually, parallel programming

models include two kinds of tasks: periodic and sporadic (with a minimal inter-arrival time).

Processes and threads activation depends on a scheduling algorithm. One can read the following survey on

scheduling algorithms for single and multi-core processors: (Blake, Dreslinski, & Mudge, 2009). Like

single-core algorithms, multi-core ones have to solve the Priority Problem. That means they have to decide

in which order and when tasks will be executed. Moreover, multi-core scheduling algorithms have to solve

the Allocation Problem. That means they have to decide on which core a task will be executed. This leads

to the definition of two categories of algorithms: global and partitioned, respectively allowing or not

migrations of tasks among the cores.

To be acceptable for an Embedded Aircraft Systems system, a scheduling algorithm shall verify the

following properties:

 Feasibility: There shall be a scheduling test that depends on the Worst Case Execution Time, the

period (if any) and the deadline of each task.

 Predictability: The Response Time of the set of tasks (i.e. the time in which all tasks will be

scheduled) does not increase if the execution time of one task decreases

The second property is critical. Indeed, it ensures that a set of tasks whose schedule has been validated with

their estimated WCET will meet its deadline considering the real execution time of tasks.

Usually, pre-emptive and priority based scheduling algorithms (for instance Rate Monotonic, or Earliest

Deadline First) are preferred for single-core processors because they check the previous properties, their

implementation is easier and worst case performance can easily be computed. For instance, ARINC 653

recommends such an algorithm to schedule processes inside a partition. Cooperative programming models

and associated scheduling algorithms may also be used as long as the system does not require robust

partitioning. Indeed cooperative programming introduces many functional dependencies between tasks that

are not compatible with robust partitioning enforcement.

It has been proven that pre-emptive and fixed priority multi-core scheduling algorithms still verify those

properties, for instance Global Rate Monotonic or Global Deadline Monotonic. However this is no longer

the case for dynamic priority algorithms, such as Global Earliest Deadline First. In the case of partitioned

algorithms, the problem remains equivalent to single-core algorithms, thus pre-emptive and priority based

algorithms are predictable.

MULCORS

EASA

 Thales Avionics page 103 Réf. CCC/12/006898 – rev. 07

Global scheduling algorithms have an advantage over partitioned algorithms: they are more efficient.

Indeed, all task sets schedulable under a partitioned algorithm will be schedulable by the equivalent global

algorithm. The opposite is not true. Moreover, global algorithms save the cost of a static allocation that

may be a NP-hard problem. However, they have drawbacks. They entail task migrations whose costs have

to be bounded, and they manipulate larger data structures whose cost may be prohibitive.

 RGL n°23

We recommend the use of partitioned scheduling algorithms and static allocation of tasks to cores that will

be decided at Design Time and forbidden at Run Time.

 Airborne Software migration from single-core to multi-core platforms 9.5.3.1..2

When porting multitasked Airborne Software from a single-core to a multi-core platform, the Airborne

Software developer has to be sure that:

 The Airborne Software execution will still be correct

 A Worst Case Execution Time will be calculated for each task or process.

It can also be noticed that multitasked airborne software may not be efficiently executed on a multi-core

platform if its tasks have dependencies requiring a specific execution order.

Concerning the first requirement, care has to be taken if the Airborne Software is implemented within a

cooperative tasks model. Indeed, such an implementation usually removes protections in critical sections

accesses. In a sequential execution, this is correct: during a critical section, no pre-emption will occur if the

developer does not explicitly write it. However, in a multi-core execution, this critical section might be

executed in parallel by different tasks, resulting in an erroneous execution. Yet the execution would be

correct if the critical section was protected by a semaphore.

 RGL n°24

We recommend, when Airborne Software is a multitasked one that critical sections should be explicitly

protected by semaphores in case of cooperative programming.

Moreover, the execution of multitasked Airborne Software on several cores may require additional

mechanisms such as cache coherency. The use of such mechanisms might not be compatible with

restrictions imposed on the Platform or Equipment usage.

 RGL n°25

We recommend that multitasked Airborne Software design should minimize the use of cache coherency

mechanisms in order to be compliant with the Interconnect Usage Domain.

MULCORS

EASA

 Thales Avionics page 104 Réf. CCC/12/006898 – rev. 07

Features regarding the second requirement will be covered in part 9.8 dealing with tools for processing

Worst Case Execution Time calculus on multi-core platforms.

 Partitioned system features 9.5.3.1..3

This section is a generic one not only focusing on IMA (Integrated Modular Avionics), this section

addresses all systems whether partitioning is implemented using ARINC653 Operating Systems or not.

When we address IMA Avionics Embedded Systems, we address partitioning regarding ARINC653

terminology: Airborne Software is composed of one or more partitions which are composed of one or more

processes. Processes are executed in the same address space among one partition. Function suppliers are in

charge of developing partitions. The Operating System provider (it may be the Platform Provider himself)

is in charge of developing the Platform software.

9.5.3.1..3.1 Components evolution to take benefit of multi-

core platforms

This section presents our view (as a Avionics Embedded

System supplier) of partitioned Avionics module adaptation

(see Figure 13) to take benefit of the introduction of multi-

core processors in IMA Platforms

Current designs for Airborne Software should not change, or

with minor modifications (i.e. comparable to a migration to

another single-core platform). Indeed, a large change in this

concept would represent a large design and implementation

effort. In addition, the trend would be to promote reuse of

previously SW Airborne Software, while keeping up backward

compatibility.

From the Avionics Embedded System supplier’s point of view, the most “flexible” component is the

integration software layer. At this level of abstraction, there are possible designs:

 A single OS instance shared among all the cores

 A private OS instance per core

 A virtualization layer hosting several operating systems in dedicated virtual machines.

Today, experience gained in multi-core architecture is deemed not sufficient to allow determination of

which design strategy is the best suited for avionics Airborne Software.

Figure 13: HW/SW Architecture for a future multicore
IMA module

MULCORS

EASA

 Thales Avionics page 105 Réf. CCC/12/006898 – rev. 07

9.5.3.1..3.2 Deployment of partitions

One stake in the introduction of multi-core in partitioned Embedded Aircraft Systems is the mastering of

the parallel execution of code on different cores. This parallelism can occur at two level of abstraction:

 Intra-partition parallelism. The extreme scenario occurs when one partition is activated on all cores

and has an exclusive access to platform resources. This is called the Symmetrical Multi-processing

(SMP).

 Inter-partition parallelism. The extreme scenario occurs when each partition are activated on one

core with true parallelism between partitions. This is called the Asymmetrical Multi-processing

(AMP).

There is a third case named Bound Multi-processing which consist in having a single instantiation of an

OS managing all Cores simultaneously, but each Airborne Software application is locked to a specific

Core. We don’t address this case in this document: it can be considered as a subset of the previous ones.

9.5.3.1..3.3 Symmetrical Multi-processing

A Symmetrical Multi-Processing (SMP) deployment means that partitions are activated on each core (see

Figure 14). Inside a partition, processes may be executed in parallel on different cores. Integrity and WCET

features covered in part 9.5.3.1 are valid in this context. There may be inter-processes conflicts when

accessing to the shared resources. This does not impact time and space partitioning (because those conflicts

occur inside the same partition), but it brings additional constraints on the function suppliers

SMP partitions deployment has the following good properties:

 Respect of ARINC 653 time and space partitioning requirement is possible without any

modifications to the guidelines.

 There is no true parallelism between partitions.

Some Airborne Software applications are, because of their architectures, good candidates for parallel

implementation. Examples of such airborne software applications are Flight Management Systems or

Signal Processing applications. However, this is not the case for many legacy airborne software

applications running on Embedded Airborne Systems such as utilities. For those applications, backward

compatibility seems possible with minor changes, but highly inefficient.

Figure 14: Example of a SMP deployment of partitions

MULCORS

EASA

 Thales Avionics page 106 Réf. CCC/12/006898 – rev. 07

9.5.3.1..3.4 Asymmetrical Multi-processing

An Asymmetrical Multi-Processing (AMP) deployment means that one partition is deployed on a single

core in parallel with other partitions (see Figure 15).Thus scheduling of processes inside a partition is

sequential

Remark: for IMA, ARINC 653 guidelines are still valid

Good properties of an AMP deployment are:

 It does not change the model of sequential partitions that are executed inside a Single core Avionics

Embedded System. Thus the backward compatibility of legacy Airborne Software is closer to the

existing single-core configurations. The precedence rules related to inter-partition communications

(e.g. partition 1 shall finish before partition 2 starts to provide valid data…) do not impact

performance.

 It scales with the increase of the number of cores

Remark, for IMA Avionics Embedded System

 ARINC 653 space partitioning requested inside an API context can be ensured between all Cores.

 ARINC 653 time partitioning is ensured between partitions deployed on the same core inside an

API context.

However, Robust Partitioning has to be ensured between Cores. As presented in the section 9.4.2.3..6, the

presence of eventual uncontrolled inter-core conflicts may not be compatible with Robust Partitioning

enforcement at the highest level of criticality.

9.5.3.1..3.5 AMP-SMP-BMP selection

Today's experience in multi-core for Embedded Aircraft Systems does not seem sufficient to recommend a

deployment rather than others. The following table gives a comparison of those approaches. The choice of

the approach is left to the platform provider.

Figure 15: Example of an AMP deployment of partitions

MULCORS

EASA

 Thales Avionics page 107 Réf. CCC/12/006898 – rev. 07

AMP

 It can be noticed that the an AMP approach offers more compatibility with existing single-core

avionic Airborne Software,

 AMP offers a better performance characteristics close to already existing systems, but presents

some difficulties in the demonstration of robust partitioning,

SMP

 SMP approach needs to be taken into account by Airborne Software developer to take benefit from

platform.

 SMP offers a better capability to implement robust partitioning, but at the price of lower

performance and less freedom to implement modifications

Criterion SMP AMP BMP

Reliability

Potential decrease due

to a higher level of

integration

Increase if it is possible

to recover from a failure

inside a core by

restarting the concerned

core rather than the

whole platform

Same advantages and

limitations as SMP and

AMP

Robust Partitioning

insurance

Time and Space

Partitioning (and thus

Robust Partitioning) can

be ensured. Partition

switching requires inter-

core synchronization.

Partition switching

timing upper bound has

to be determined

Space partitioning can

be implemented.

However, time

partitioning is not

enforced anymore

between partitions

executed simultaneously

on different cores

This approach requires

Robust Partitioning to

be ensured

Same problem as AMP

Performance gain

on partitions

(compared to a

single-core similar

platform)

Significant performance

increase for partitions

that can be parallelized

(e.g. Flight

Management System)

No performance

increase inside one

partition

Depending on the

number of cores

executing the partition

Airborne Software

Integration

Slight increase of

application integration

because of individual

performance increase

Significant increase of

Airborne Software

integration

Increase of Airborne

Software integration

MULCORS

EASA

 Thales Avionics page 108 Réf. CCC/12/006898 – rev. 07

Backward

compatibility of

multitasked

Airborne Software

Care has to be taken if

the programming model

is cooperative. Critical

section accesses have to

be explicitly protected

Complete backward

compatibility in the

execution model.

Functional porting may

be required

Same problem as SMP

for multi-core partitions

Porting effort

Main effort is by

function suppliers. They

may have to redesign

their Airborne Software

to support parallel

execution

Main effort is by

platform provider. He

has to provide Robust

Partitioning and

independent WCET

calculus methodology

Effort required both by

function suppliers and

platform provider

9.5.3.1..3.6 Others deployment schemes

In the deployment schemes presented before, we covered alternatives using all cores of the platform each

hosting up to DAL-A or DAL-B level.

Additional “restrictions” can be brought at this level, for example, SysGo’s with its PikeOS Operating

System deployed on a multi-core processor does not allow a DAL-A partition to be scheduled in parallel

with other partitions (see Figure 16: partitions 1 and 2 are DAL-A and executed on an equivalent single-

core platform).

Such a deployment restriction allows Robust Partitioning to be ensured for DAL-A / DAL-B Airborne

Software with Time and Space partitioning but this restriction introduces a significant loss of performance

from “n” cores down to “one”). This method expects reduction of performance to be acceptable if the

proportion of DAL-A / DAL-B Airborne Software remains small inside the module.

Remark: In IMA systems where hosted Airborne Software is mainly at DAL-A / DAL-B level, this

approach can’t be used and so conflicts have to be managed.

Figure 16: Example of a restricted partitions deployment scheme

MULCORS

EASA

 Thales Avionics page 109 Réf. CCC/12/006898 – rev. 07

Today’s experience in Embedded Aircraft Systems seems not be enough to state whether such restrictions

are necessary or if all cores may be used whatever the level of criticality.

9.5.3.2. Airborne Equipment software features

Airborne Equipment software usually refers to an operating system and/or to a hypervisor whose integrity

is protected by a dedicated privilege level. The platform provider may not be the Airborne Equipment

software developer (he may integrate existing COTS solutions) but he is supposed to have a sufficient

knowledge on its behavior and its architecture.

 RGL n°26

We recommend, if SMP mode is selected by the platform provider for the Operating System that processes,

threads or tasks are statically allocated to cores to achieve determinism and repeatability.

 RGL n°27

We recommend, if the Avionics Software Behavior is not known by the platform supplier and AMP mode

for the Operating System is selected, the use of a Hypervisor to master the behavior of the Interconnect

Usage Domain.

 Architectural concerns 9.5.3.2..1

Features concerning the architecture of Platform or Equipment software are close to ones concerning

partition deployment on a multi-core platform. They depend on the cores on which the platform software is

deployed.

9.5.3.2..1.1 Symmetrical Multi Processing

We talk about a symmetric architecture (also called Symmetric Multi-Processing-SMP – In the literature)

when a single instance of the platform software is deployed on

all cores (see Figure 17). It can be noticed that the notion of

“deployed on all cores” may be ambiguous. For instance, the

same service may be executed locally on each core (i.e. from a

private cache), even with private data. Other services may be

hosted by a dedicated core, and service requests occur through

inter-core communication.

The notion of symmetric architecture for privileged software

can be more precisely defined as follows:

SMP privileged software has all its services executed under a

non-disjoint execution environment on each core.

Figure 17: Example of symmetrical OS deployment
(source: Freescale white paper on SMP/AMP/BMP)

MULCORS

EASA

 Thales Avionics page 110 Réf. CCC/12/006898 – rev. 07

An execution environment refers to virtual memory mapping on physical memory. For instance, we can

consider two cores A and B. The privileged software may define local (and disjoint) memory pages inside

A and B, and execute some services inside such pages. Thus, the services on core A are actually isolated

from the duplicated services on core B. However, core B shares the environment under which core A

defined its memory mapping. Thus it has access to the information used by core A to define its memory

mapping.

9.5.3.2..1.2 Asymmetrical Multi Processing

We talk about asymmetric architectures (or Asymmetrical Multi Processing -AMP) when several

independent instances of privileged software are executed

on different cores (for instance, see Figure 18).

Each privileged software instance (operating system or

hypervisor) is executed in its own context. That means on

one core, the memory mapping is not visible from the other

cores. This deployment allows the reuse of single-core

operating systems with minimal modifications. Care has to

be taken at the boot sequence because one core will be

started as master and will be in charge of performing

platform early initialization and starting its fellows.

Moreover, I/O features may occur when shared I/O’s are

accessed concurrently by different operating systems.

Those features are covered in the next section as they are

classically resolved through I/O virtualization.

Figure 18: Example of asymmetric architecture
(source: Freescale white paper SMP-AMP-BMP)

MULCORS

EASA

 Thales Avionics page 111 Réf. CCC/12/006898 – rev. 07

9.5.4. Mitigation means

This chapter deals with task 5

9.5.4.1. Summary of task 5

In each case where a component or feature is not suitable for use in safety-critical airborne systems,

identify whether or not there are any feasible measures that might be used to mitigate the particular

negative effect by means of, for example, architectural mitigation, work-around, disabling the feature

concerned, imposing rules or limitations on the use of the feature concerned or any other means that the

study may identify.

9.5.4.2. Mitigation Means Analysis

There are quite a few features in the design of COTS multi-core processors that must be mastered to allow

use of such technology in safety-critical systems. These include: variability of execution time, service

and/or transaction conflicts, core interconnect switches, cache architecture structures, shared services,

inter-core interrupts, access to peripherals, programming languages. These features are listed in the

following table, together with suggested recommendations on mitigation means that can be used. This does

not preclude use of the actual solution that might be developed by the computing platform designer to cater

for each of those features.

COTS Multi-Core Features Mitigation means Comments

Variability of Exec. Time WCET strategy for assessment,

measurement and continuous

monitoring.

Tools may be used for

measurement.

Service/transaction conflicts Software-controlled scheduling of tasks

or processes.

Cores interconnect switch Interconnect Usage Domain Definition.

Cache architecture structure Multi-core-related cache management

(e.g. one cache way per core or

restrictions on the use of shared caches).

Cache consistency verified by trusted

and privileged software.

Similar approach can be used

for the control of MMU

consistency.

Shared services Similar to Airborne Software

Programming Interface (APIs), services

must be offered via a trusted and

privileged software.

Inter-core interrupts Accept interrupt only when expected

(rules to implement wait-for-interrupt)

or restrictions on the use of inter-

MULCORS

EASA

 Thales Avionics page 112 Réf. CCC/12/006898 – rev. 07

processors interrupts.

Access to peripherals Shared I/O’s configuration and/or shared

memory space should be allocated by

trusted and privileged software, either

directly or via configuration controlled

configuration tables.

Programming languages Determine adequate strategy for multi-

processing programming (e.g. pre-

emptive versus co-operative).

One of the principal features of multi-core processors that have a tremendous impact and consequence for

their use in safety-critical airborne systems is the increased variability in the execution time, when

Airborne Software is run directly on the multi-core architecture. The negative effect of this feature is the

inability to demonstrate a stable WCET, which can be relied upon for certification of runtime Airborne

Software. The mitigation means that are suggested to handle such difficulties are briefly exposed below.

This is mainly based on a straightforward step-by-step approach to WCET determination.

In the case of single-core [mono]-processors, their internal complexity of cache architecture in particular

(including multiple levels of caches), and built-in parallelism (e.g. instruction execution based on pipelined

architecture), already led to difficulties in the determination of a formal WCET for software running on

such processors. However, measurements combined with assessments, relying also on architecture

modeling, have allowed a demonstration of WCET to be achieved with an upper bound limit value with an

acceptable level of confidence.

For Multi-core processors, this feature is a bit more stringent, hence a more “relative” WCET should be at

least achieved, i.e. using the same basic approach as for mono-core processors, possibly complemented by

additional measurements, including under abnormal conditions (interrupt triggering, simulated failures or

reset cases) to allow an assessment of the robustness of such measurements.

The following is suggested as mitigation means when determinism, hence an absolute WCET is not

achievable. The recommended approach consists of four main axes that must be addressed:

9.5.4.3. Time jitter ratio to total execution time

A Channel Interference Analysis should be performed in any case whether the multi-core platform is

destined to host single or multiple Airborne Software.

This interference channel analysis should allow determination of a maximum execution time jitter, based

on:

 A theoretical analysis of available information (from device manufacturer and on the

implementation in the architecture), or

 Via measurements based on selected benchmarks implementing worst case perturbations regarding

expected jitter, or

MULCORS

EASA

 Thales Avionics page 113 Réf. CCC/12/006898 – rev. 07

 A combination of the two methods above.

As those methods are based on engineering judgment, additional margins should be added to this jitter

ratio.

9.5.4.4. Airborne Software WCET evaluation

WCET for each Airborne Software could be evaluated as on a mono-processor in a first step, and corrected

using above jitter ratio including margins. Validation of final WCET value could be done by measurement

in the presence of other selected benchmarks implementing worst case perturbations on other processors

(defined according to time jitter ratio).

9.5.4.5. Monitoring during real-time execution

Execution time should be monitored (e.g. using built-in checks that execution time does not exceed WCET,

and records of minimum and maximum values).

This monitoring could be limited to the critical paths identified for an Airborne Software application,

providing that background tasks are assessed as not being affected by jitter. This run time monitoring

comes in addition to the partition switching code that insures partitioning. It has two main objectives:

 Firstly during the development phase to collect data relative to the actual execution time as

observed. This should lead to complementary validation of the jitter ratio determined above, but

also to identify scenarios that were not correctly covered by analysis, and to implement

corrections to the WCET analysis and jitter ratio whenever necessary.

 Secondly, during run time operation, once the jitter ratio is considered stable (i.e. sufficiently

bounded with acceptable margins) to implement detection mechanisms able to stop processor

execution (platform reset) of Airborne Software (software reset) when an Airborne Software

application exceeds the target limit.

9.5.4.6. Airborne Software robustness

As the above described method is largely based on engineering judgment, it might be considered that

execution time jitter in some remote cases could cause the WCET to be exceeded, then leading to

unacceptable spurious resets (platform or Airborne Software). A general strategy and principle of airborne

software robustness versus resets should be implemented.

MULCORS

EASA

 Thales Avionics page 114 Réf. CCC/12/006898 – rev. 07

9.6. FAILURE MITIGATION MEANS

This chapter deals with task 10

9.6.1. Summary of task 10

Examine whether the architectures of multi-core processors may affect the ability of a system to detect

failures within the processors or their associated hardware and the ability of the system to make it safe, to

re-start and recover in the event of a failure being detected.

The study shall determine which multi-core processors incorporate features such as memory management

units and detection of division by zero and ensure that watchdog timers can be incorporated. The study

shall identify which kinds of failure detection are possible, whether the processors incorporate any form of

exception handling and what the response of the processor is to error detection, e.g. shutting down the

affected software partition, the processing core, the entire processor or any other means.

9.6.2. Mitigation means

The architecture of multi-core processors is organized around the Interconnect.

In association with the temporal Interconnect behavior defined through the Interconnect Usage Domain, it

is expected that the Interconnect shall not jeopardize the intrinsic processor detection of abnormal events

and also shall not propagate any abnormal events initiated by a processor to the others or a group of others

attached to the same Interconnect.

The generation of exceptions and the recovery actions shall be considered at the fault containment area

level: partition, processor, I/O.

The Interconnect shall act as a fault container with respect to each processor including their I/O

management. The notion of partitioning has also to be extended down to the I/O interfaces with associated

fault detection.

 RGL n°28

We recommend, for mitigation means, that the Interconnect Usage Domain should be defined to act as a

fault container between cores.

MULCORS

EASA

 Thales Avionics page 115 Réf. CCC/12/006898 – rev. 07

9.7. COTS RELATED FEATURES

This chapter deals with task 11

9.7.1. Summary of task 11

Analyze the processor architectures and examine any problems or processor errata that have already been

found to determine whether multi-core processors in general or particular types of them might suffer from

more frequent failures or different or more widespread types of failures than the current single core

processors. This shall include failures due to radiation induced effects such as SEU (single event upsets),

whether such effects would be detectable and whether the processors incorporate any means to detect such

events and correct the errors produced.

9.7.2. COTS related features analysis

The following major concerns are determining factors for the selection of complex and highly complex

COTS processors for use in Embedded Aircraft Systems. The concept of Systems On Chip (SoC), which

includes either microcontrollers and multi-core processors, together with heterogeneous peripherals, has

been known over the past few years. Those concepts were made possible thanks to high-density integration

of transistors on a single chip. From Moore's law the capability of technology in terms of number of

transistors integration is to double every 12 to 18 months.

Figure 19: an example of technology evolution, up to 2022
(Source: INTEL)

MULCORS

EASA

 Thales Avionics page 116 Réf. CCC/12/006898 – rev. 07

The benefits of such technology are to integrate more and more transistors into smaller silicon areas, while

achieving better performance and low-power consumption. An illustration is the Deep [and Very Deep]

Sub Micron (DSM) CMOS technology used for multi-core processors. Deep submicron technology is using

transistors of smaller size and faster switching rates. Transistor sizes, see Figure 19, down to 35nm, 25nm,

18nm, 13nm and below are envisioned, compared to the currently used sizes of 90nm and 45nm. However

a number of features and challenges arose with such technology:

 Low-power design and temperature susceptibility,

 Better Signal/Power Integrity and quality,

 Higher Density and Design Complexity,

 Packaging and testing of large chips,

 Design to Cost optimal approach,

 Device parameter variability due to leakage

To date, a conservative approach in the design of embedded complex and critical real-time Embedded

Aircraft Systems was to use complex to highly-complex micro-processors and microcontrollers, so-called

SoCs, without further consideration of technology concerns. However various aspects should be addressed

before going farther toward DSM with technologies down to lower sizes. Two examples are addressed

below:

9.7.2.1. Electro-migration

This phenomenon tends to reduce the useful life duration of an SoC (figures for 90nm technology, when

used continuously at maximum temperature range (105°C) and frequency range, are around 15 years, for

45nm it can be reduced to about 10 years, and down to less than five years for consumer grade quality

below 28 nm).

This becomes insufficient for their use in Embedded Aircraft Systems for which the required reliability

figures would be more of the order of 15 years. For other reasons (procurement costs, components

obsolescence and newly required functions), Embedded Aircraft Systems renewal for on-board typical

commercial aircraft is of the order of every 10 years, which would make 90, 45, 32 nm technology still

compatible with such designs, analysis in progress for 28 nm.

 RGL n°29

We recommend, for multi-core processor selection, that selection criteria should include Intrinsic

Reliability data delivered by the component manufacturer.

9.7.2.2. Single Event Effects

Sensitivity to atmospheric radiation such as Single Event Upsets (SEUs) and Multiple Bit Upsets (MBUs)

is a serious concern for embedded Airborne Software. Experience has shown that for 90nm or 45 nm

technologies, no significant degradation is observed. Component manufacturers are currently testing down

to 28 nm technology. First results are expected during year 2013. Error Correcting Codes (ECC) have been

MULCORS

EASA

 Thales Avionics page 117 Réf. CCC/12/006898 – rev. 07

implemented in the design made with Single-core microprocessors, including relying upon ECC internal to

the COTS device. Some COTS multi-core processors now feature ECC mechanisms inside.

However, it is anticipated that access to information from manufacturers on internal memory architecture

with or without ECC capabilities will be only possible via Non-Disclosure Agreements (NDA). More data

seems to be available on electro-migration effects on the useful life duration.

 RGL n°30

We recommend, for multi-core processor selection, that selection criteria should include SEE analysis

(manufacturer presents SEE under SER
33

 wording) delivered by the component manufacturer.

33

 SER : Software Error Rate

MULCORS

EASA

 Thales Avionics page 118 Réf. CCC/12/006898 – rev. 07

9.8. METHOD AND TOOLS

This chapter deals with task 9

9.8.1. Summary of task 9

Identify which methods and tools would be suitable and / or necessary in order to conduct ED-12B / DO-

178B verification of the Airborne Software hosted on multi-core processors. The study shall determine (if

possible) whether the WCET of tasks could be measured or analyzed for each type of processor hardware /

software architecture and identify any aspects of particular processor groups that might either facilitate that

measurement or make it more difficult.

9.8.2. Methods and tools analysis

Most of the verification methods and tools already used to perform software verification activities required

by the ED-12B/DO-178B industry standard for certification are also usable for software running on multi-

core processors. This remains particularly true when Airborne Software runtime partitions are properly

controlled under an Operating System environment, and when the multi-core processor features are

themselves under control of a Hypervisor, which is identified as of central importance in the approach to

mastering complexity of multi-core processors.

Methods supported by tools that are useful for instrumentation and testing of Airborne Software running on

COTS Multi-Core processors include:

 WCET tool based on worst case execution path,

 Miscellaneous trace, monitoring or reporting tools,

 Processor driver (e.g. Hypervisor) seen as a tool,

 Usage Domain Verification /early Validation tool,

 Test means, test scripts, dummy Airborne Software,

 Miscellaneous Debugging and Measuring tools.

As already addressed in this report, the feature of WCET analysis of Software running on multi-core

processors is more difficult to achieve when execution time variability is increased due to such a

technology.

A 10 to 20 time increase in the WCET variability has been reported by some studies. In that situation, the

measured WCET, even complemented by analysis and corrected using safety margins, may no longer

provide significant useful and reliable information on the actual WCET to be claimed as part of

certification.

The problem of WCET calculus is extremely complex to resolve exactly. WCET estimation methods will

determine approximations of the real WCET. When considering a WCET calculus method for highly

MULCORS

EASA

 Thales Avionics page 119 Réf. CCC/12/006898 – rev. 07

critical Airborne Software, we must have the insurance that the method is pessimistic, that means it will

always provide an upper bound of the real WCET.

WCET measurement methodologies can be divided in two categories (see (Wilhelm, et al., 2008) for more

details):

 Based on static analyses.

 Based on measurements under a worst case scenario.

The WCET calculus based on static analyses relies on a model of the processor to determine the worst case

path in the Airborne Software Control Flow Graph within a Path Enumeration. The processor model has

to contain information that describe the processor behavior so that the CFG
34

 can be accurately determined,

and timing information for various operations (processor services and eventual Operating System calls) so

that the CFG can be annotated with timing weights. Care has to be taken when using those timing

annotations. Indeed, optimizations mechanisms such as pipelines that are present inside the cores will

significantly decrease the real execution time while the estimated WCET won’t. Moreover, a WCET

analysis contains in particular a cache content analysis that may be difficult to fulfill (refer to (Hardy,

Analyse pire cas pour processeur multi-coeurs disposant de caches partagés, 2010) for more details).

Today, this kind of methods is applied on simple architectures such as microcontrollers and academic

processors. To the best of our knowledge, no complex multicore COTS are supported yet. We can identify

the following tools that implement such methods:

 OTAWA: This open-source tool is developed at laboratory IRIT located at Toulouse, France. It has

a large support for ARM, PowerPC and INTEL® processors. It implements several algorithms for

pipeline behavior prediction, cache content prediction...

 aIT: This is a proprietary tool developed by AbsInt Angewandte Informatik in Germany

 Bound-T: This is a proprietary tool that is maintained by Tidorum in Finland. It is involved in

European Space Agency programs.

The WCET calculus methods based on measures performed under Worst Case Scenario are usually

optimistic methods. That means they estimate a WCET with some level of confidence, but do not guarantee

that it is an upper bound. Yet such a method can be further corrected to provide pessimistic bounds on the

WCET. It requires the determination of a Worst Case Scenario of input parameters for the tested Airborne

Software.

However, this Worst Case Scenario may be difficult to determine accurately. Indeed, it would require itself

timing information on the processor services. Moreover, Worst Case Scenario definition has to take into

account all possible states for the processor (but corrections may be done to simplify this step). However,

this family of methods saves the human and technical cost of defining an accurate model of the platform.

Today, it is more widely used in the industry. We identified the following tools:

 RapiTime: This proprietary tool is based on a hand definition of the worst case scenario, with

automated assist for program analysis. It provides a framework under which a code coverage

analysis can be done so that the Worst Case Scenario can be ensured. Finally, it determines the key

points of the program that may kill the WCET for further code optimizations.

34

 CFG : Control Flow Graph

MULCORS

EASA

 Thales Avionics page 120 Réf. CCC/12/006898 – rev. 07

Processing a WCET on a multicore processor introduces additional issues that are linked to:

 The impact of concurrent accesses to the interconnect. Here, considering that each interconnect

access will occur in the worst case situation may lead to an over approximation of the real WCET.

We refer here to the RGL n°9

 The impact of concurrent accesses to the main memory that can be interleaved in an inefficient

way. We refer to the RGL n°21.

In the case of IMA, we consider that in the case of incremental certification, the platform provider does not

have any visibility into the embedded Airborne Software, and the system integrator cannot suppose it has

visibility. Thus the WCET analysis method must be applied to all Airborne Software applications

independently.

MULCORS

EASA

 Thales Avionics page 121 Réf. CCC/12/006898 – rev. 07

9.9. EASA GUIDELINE FOR MULTI-CORE PLATFORMS

This chapter deals with task 6

9.9.1. Summary of task 6

Identify any cases in which a non-favorable characteristic might be made compliant if a modification or

addition was made to the current EASA guidance material, while still providing robust partitioning

between tasks and deterministic behavior. If there are such cases, the suggested modification to the EASA

guidance material shall be identified and why this might be desirable. (Modifications to EUROCAE RTCA

documents should not be suggested because their modification is not within the power of EASA alone,

although any points within those documents that cause compliance problems for multi-core processors

shall be identified in the study.)

9.9.2. Proposed Guideline

ED-80/DO-254 currently addresses design assurance for COTS as being part the overall hardware design,

verification and related processes. Guidance identifies electronic component management, component

procurement data, and service experience; as candidates to substantiate assurance for COTS (refer to ED-

80/DO-254 §11.2 &11.3).

EASA CM SWCEH-001 iss.1 rev. 1 section 9 provides guidelines on activities to be performed depending

on the complexity and criticality of the highly complex COTS. These activities extend from assessment of

hardware item related data, to architecture, partitioning and system safety aspects, through considerations

on integration with hardware and software, configuration management and service experience. Alternative

methods are also open without detailed directions, and providing justification is presented to authorities for

agreement.

There are a few other features with complex COTS that are also valid for COTS multi-core processors:

 Very low probability to obtain ED-80/DO-254-compliant or usable life-cycle data,

 Extensive verification and reverse engineering of COTS CEH are both impractical,

 Service experience may not be available or sufficient due to a fast-evolving technology,

 Highly configurable features via microcode or registers are adding to complexity,

 Reaction to environment (EMC, power supply, temperature, see) is difficult to predict,

 Availability of actual internal failure modes and failure rate is difficult to obtain, if any,

 Throughput performance, not easily predictable, may lead to some non-determinism,

 Imply strong interactions with software, hence require robust partitioning for protection,

 Usage limitations are difficult to determine completely (WCET, usage domain, WCMU),

 Suspicion of errors and misbehavior due to built-in complexity and lack of observability,

 Internal unused functions (e.g. For manufacturer’s test purposes) not known to the end-user,

 Configuration control and change management, except for errata, far from user’s control.

MULCORS

EASA

 Thales Avionics page 122 Réf. CCC/12/006898 – rev. 07

Though existing COTS guidance in ED-80/DO-254 and EASA CM SWCEH-001 can be used to build

development assurance on COTS Multi-core processors, the novelty of such devices suggests a review of

current guidance with a new spirit. And, based on potential new ideas or approaches, this could be used to

give birth to modified or new guidance. An assessment of the currently available EASA guidance on COTS

(EASA CM SWCEH-001 Iss. 1 Rev. 1) is provided in Appendix.

As a result of this assessment, the main characteristics of COTS multi-core processors that could raise

some difficulties in showing compliance with certification requirements, hence that could be candidate for

additional guidance are identified as follows:

 Closer cooperation is necessary with the device manufacturer, possibly including proprietary data to

be provided under a Non-Disclosure Agreement (NDA). The current EASA guidance material has

already addressed this issue with respect to Design Data and Configuration management (Items [3]

and [9] of section 9 in SWCEH-001). However, this could be more specifically addressed in

relationship with particular features of such devices (e.g.: behavior of the Interconnect cross-bar

switch). In addition, the conditions for dealing with such NDAs between Industry and Authorities

would require additional guidance, including for non-technical aspects of those agreements.

 The Definition, Validation and Verification of the Usage Domain (i.e. limitation in the usage of the

COTS multi-core component characteristics and performance, particularly for the interconnect

feature) is of central importance in the mastering of the device, hence for the showing of

compliance with the development assurance objectives. The current EASA guidance material has

already addressed this issue with respect to Usage Domain aspects (Items [4] and [5] of section 9 in

SWCEH-001).

 COTS Multi-core processors require software drivers (so-called: Operating System, Kernel or

Hyper-visor or micro-code) that are executed to the highest privilege level immediately on top of

the COTS Multi-core hardware. Some drivers/hyper-visors are available upfront from the COTS

manufacturer, though they may not contain all the required routines to cater with all aspects of

compliance with the limitations identified and required mitigation of potential safety effects. Hence

those considerations on software drivers should be provided, for example, the applicant should

develop such software to the necessary Design Assurance Level (DAL) per ED-12B/C-DO-178B/C.

In addition, validation of software driver/hyper-visor requirements should be performed consistent

with the Usage Domain definition

MULCORS

EASA

 Thales Avionics page 123 Réf. CCC/12/006898 – rev. 07

10. OUTREACH

"This report could be used first-of-all for what it was destined for in the first place, that is to help EASA

complement its guidance with specific aspects related to COTS multicore processors.

In addition, we think that the reader could find some insight into both the understanding of main

characteristics of such devices and into the significant features, which have safety impact when used in

building safety-critical Embedded Aircraft Systems with such devices.

The proposed recommendations are mainly directed to platform providers and eventual system integrators.

More generally, this report targets the whole avionic community (function suppliers, platform suppliers,

OS providers, system integrators, certification authority) and the processor manufacturers who are

interested in the avionic market. Collaboration between avionic component providers and processor

manufacturers will have to be stronger to demonstrate the platform airworthiness (including RAMS) to the

certification authority.

This report has been written on purpose to be readable with little background in digital Embedded Aircraft

Systems. Thus it can be taken as a first glance at features regarding multi-core processors for an avionic

usage at a high level of criticality.

This report aims to summarize the features that are common to all multi-core processors. Even if we

provide illustrations on Freescale P2020, QorIQ™ P4080 and ARM CORTEX®-A15 MPCore™ as

representative of a large family of processors, a deeper study would have to focus on one processor (or

maybe one series) to take benefit of its specific characteristics.

Besides, the following suggestions or lessons learned could be addressed when applicable to other studies,

if needed:

 On the technical content of the report: Though explanations are provided whenever necessary, such

a report might require prerequisite knowledge from the reader prior to entering into the details of

technical issues. However, reference to available literature is also provided in order to build that

knowledge for a better understanding of the report.

 On the form of the study and report: Technical exchanges and reviews with EASA at dedicated

monthly meetings were deemed fruitful and allowed Thales to both improve the content of the tasks

performed and reorient the research effort towards the actual and detailed expectations of EASA. A

workshop would have been even more useful.

 On the task implementation methodology: A lesson learned from such an organization for a similar

project would be to limit the breakdown into tasks to less than a few (4 to 6 tasks) in order to avoid

dispersion of issues over too many packages and to better fit with the expected achievement of such

a study project within a limited amount of time.

MULCORS

EASA

 Thales Avionics page 124 Réf. CCC/12/006898 – rev. 07

11. CONCLUSIONS

11.1. CONCLUSIONS WITH RESPECT TO THE REDUCTION OF COMPLEXITY

The complexity of COTS, in particular Highly Complex COTS Multi-Core Processors has increased over

the past few years, while the level of demonstration for design assurance should remain at least the same

as- or better than for COTS without such increment in complexity.

However a COTS component remains a COTS component, i.e. it features proprietary data from the COTS

manufacturer. Two approaches would be possible to cater for such a challenge:

 Access to additional data under agreements with the COTS manufacturer

 And/or mitigation of potential COTS faults or errors via System-level, Safety-oriented strategies,

possibly combined with real-time surveillance and detection mechanisms embedded within the

Processor Drivers (Hypervisor) and/or Operating System.

A reduction of the complexity and difficulties that arose from the use of Multi-Core processors while

meeting required deterministic behavior and target levels of performance integrity has been proposed in

some research.

In this report, Thales has put emphasis on specific Multi-Core features linked to Shared Resource Accesses

like Memory, Bus, Network, Internal Registers, Clock Management, etc.

These features are the differences between single-core and multi-core devices, so by managing these

differences we can say that the constrained multi-core behavior is equivalent to that of multiple single-core

ones.

The management can be:

 At Airborne Software Level

o If Airborne Software behavior is well known and well managed, then by allocating Airborne

Software applications to cores, we can demonstrate the non-interaction between cores. An

example is that the allocation of a DAL-A software application to one core, lower DAL

applications to other cores and programming of the arbiter to favor DAL-A software can

offer determinism for this configuration

 At Hypervisor level

o In this configuration, the Hypervisor is used to constrain the behavior of the interconnect.

These constraints reduce the global performance of the multi-core processor but offer

determinism and so the global behavior can be demonstrated.

MULCORS

EASA

 Thales Avionics page 125 Réf. CCC/12/006898 – rev. 07

11.2. MULTI-CORE PROCESSOR USAGE DOMAIN RELATED CONCLUSIONS

Definition, Validation and Verification of a Usage Domain (UD) for such highly complex COTS Multi-

Core processors is required. This approach is already known and offered by existing certification guidance

for Complex and Highly Complex COTS. One recommendation would be to distinguish between the UD

rules related to segregation constraints (e.g. segregation between cores), from the UD rules related to local

limitations (within a single core).

11.3. SIGNIFICANT FEATURES RELATED CONCLUSIONS

Refer to section 9.5.4 for a summary of mitigation means suggested for the various features of COTS

Multi-cores that could potentially affect the use of COTS multi-cores as part of safety-critical computing

platforms.

For the particular case of determining WCET, knowing the high variability of execution time, the

following step by step approach can be recommended to ensure the temporal deterministic behavior of

processors; such an approach is also valid for multi-core processors:

1) Characterization of execution time jitter of the operating system services,

2) Determination of the Worst case exec. Time (WCET) plus allowed margins,

3) Incorporated real-time monitoring of actual exec time versus allowed WCET,

4) Collect data for assessment of the processor + Airborne Software operating behavior,

5) Depending on the above assessment, establish additional rules or limitations,

6) Apply necessary modifications.

11.4. CONCLUSIONS ON ROBUST PARTITIONING

Mitigation to cater for the inherent complexity of multi-core processors via functional robustness at

Airborne Software level is possible whenever the developer has allowed access to and detailed knowledge

of the computing platform.

For example, defensive programming techniques can be used to compensate for potential misbehaviors.

This possibility is not accessible for multi-Airborne Software execution platforms where Airborne

Software developers have only access to an allocated portion of the platform with strict rules and

requirements to meet in order to allow adequate operation of the whole integrated system.

Multi-software architectures are now common, hence robust partitioning of Airborne Software must then

be ensured. For example an essential feature is the execution time variations due to jittering on partition

switching that should be minimized to allow time-deterministic behavior. Indeed, guidance is that temporal

determinism shall be ensured knowing given criteria. For example, such criteria can be: Total execution

time lower than any known Maximum value, and/or Execution Time variations lower than a bounded low

value.

MULCORS

EASA

 Thales Avionics page 126 Réf. CCC/12/006898 – rev. 07

11.5. CONCLUSIONS ON SUGGESTED MODIFICATION TO EASA GUIDANCE

11.5.1. Routes to compliance

Besides EASA CM SWCEH-001 guidance that can be used, and possibly improved and simplified (refer to

Appendix A), different routes to reach compliance for COTS Multi-Core could be suggested.

Collecting data from the component supplier, starting from Electronic Component Management Report

(ECMR) complemented by a questionnaire approach already being put in practice seems a good approach

towards this end.

Demonstration of component capabilities ‘Deterministic behavior, Partitioning assurance and Usage

limitations) versus Certification objectives (intended function, safety aspects and foreseeable conditions).

Considerations on the immediately surrounding software layer, i.e. the Hyper-visor, whose specification

ensures the robustness of the use of the device and providing access to the internal resources.

The route to compliance or a combination of routes selected by the developer are some of the key-aspects

in providing design assurance for COTS Multi-core as part of a certification process. Such technical

decisions impacting the development and certification processes should be presented as early as possible to

Authorities (e.g. during familiarization meetings)

11.5.2. Advanced guidance

System safety approach based on interpretation and deployment of ED-80/DO-254 Appendix B on advance

verification methods could be applied to COTS Multi-Core processors,

Simulated Service History based on extensive testing in lab is an approach that is already offered by EASA

CM SWCEH-001 section 9 on COTS, but would deserve more elaboration in terms of method

(deterministic or probabilistic), analyses (e.g. representativity and statistic) and acceptable outcomes.

MULCORS

EASA

 Thales Avionics page 127 Réf. CCC/12/006898 – rev. 07

12. RECOMMENDATIONS

The recommendations propose to allow the use of Commercial Off-The-Shelf Digital multi-core processors

in aircraft / engine airborne systems that have safety implications for the aircraft.

In the current EASA Certification Specifications (CS), there are no specific requirements for the

certification aspects of COTS multi-core processors. The EASA AEH Certification Memorandum

SWCEH-001specifies activities for COTS processors and includes one paragraph on multi-core processors

in section 9.3.3.

The purpose of this Section is to define specific guidance for certification aspects associated with the use of

COTS multi-core processors in airborne systems.

12.1. PURPOSE

The following recommendations have been expressed based on the current study as exposed in section 9,

Results and outcome and 11, Conclusions of this report. Recommendations are written to the minimum

expression achievable in order to capture only the essential flavor that arose from the considerations given

here above.

 RGL n°31

The design of the computing platform embedding COTS Multi-core processors should incorporate software

routines or hardware mechanisms able to handle or mitigate the potential effects of significant features of

the COTS such as:

1) variability of execution time,

2) Services and/or transactions conflicts,

3) Core interconnect switch,

4) Cache architecture structure,

5) Shared services,

6) Inter-core interrupts,

7) Access to peripherals,

8) Programming languages.

Rationale: From task 5 and sections 9.3 and 11 of this report.

MULCORS

EASA

 Thales Avionics page 128 Réf. CCC/12/006898 – rev. 07

 RGL n°32

The routes to compliance with certification requirements selected as part of the certification process of

hardware design incorporating COTS Multi-core processors should be presented as early as possible to

Authorities (e.g. during familiarization meetings), showing that the device complexity is mastered, possibly

using the hereby provided recommendations.

Rationale: From task 6 and sections 9.4 and 11 of this report

 RGL n°33

Existing guidance on COTS (Complex to Highly-Complex), possibly amended using the conclusions of

this report, including for suggested simplifications, could be used as part of the certification process of

COTS multi-core processors.

Rationale: From task 6 and sections 9.4 and appendix 14.1 of this report

MULCORS

EASA

 Thales Avionics page 129 Réf. CCC/12/006898 – rev. 07

12.2. PROCESSOR SELECTION GUIDE

 We recommend to use selection criteria guide for processor selection (recalled below)

o The manufacturer’s will to cope with the certification process, corresponding

communications and press releases,

o The openness of the architectures proposed by the manufacturer, the existing and available

documentation (public or under NDA)

o The ability and will to provide descriptive, qualitative and qualitative data able to support

safety analyses performed on the different platforms.

o The ability to produce and maintain the components over time compatible with avionics

needs and to provide assistance to obsolescence in a cooperative manner.

o The economic situation and the lifespan of the manufacturer

o The manufacturer’s platforms are supported by several existing Hypervisor and OS

o For multi-core processor selection, selection criteria must include Intrinsic Reliability data

delivered by the component manufacturer

o Selection criteria must include SEE analysis (SER in processor manufacturer wording)

analysis delivered by the component manufacturer

 We recommend to follow the component selection criteria define below :

Criteria Sub-criteria

Interconnect features

Information on the interconnect

behavior is available

The interconnect protocol is documented

The interconnect protocol implementation allows transactions

reordering

It is possible to identify from an assembly code all transactions

sent on the interconnect

Arbitration rules description is available

Routing and device allocation rules description is available

All information on interconnects features configuration is

available

There is a configuration that cannot be changed dynamically and

silently

Information on the interconnect

design is available

The interconnect topology is documented

The arbiter is centralized or distributed

The manufacturer has stated that the interconnect embeds no

hidden mechanisms

The interconnect has internal waiting queues and contention

MULCORS

EASA

 Thales Avionics page 130 Réf. CCC/12/006898 – rev. 07

mechanisms

Integrity

Information on the interconnect

integrity is available

The interconnect protocol is transactions lossless

The interconnect embeds transaction corruption detection

mechanisms, such as parity or ECC for eventual internal storage

In case of internal failure, the interconnect can propagates an error

to the concerned core and/or an external monitor

WCET

Information on the interconnect

worst case behavior is available

The timing variability of a transaction service can be bounded

without taking into account conflicts situations

The timing variability of a transaction service can be bounded

taking into account specific conflicts situations

Transaction service timing

variability can be measured

The platform embeds hardware assist for measuring in each core

the time variability of transactions service

The platform embeds internal monitoring mechanisms that can

observe conflicts inside the interconnect

The processor manufacturer is able to confirm observations on

worst case timing variability for transaction service under

Interconnect Usage Domain restrictions.

Shared Cache features

Information on the cache

behaviour is available

The available replacement policies are documented

There exist a cache prediction algorithm that supports at least one

replacement policy

The cache can serve multiple transactions in parallel

Restrictive cache configurations

are available

The cache can be partitioned per set and/or per way

The cache can be configured partially or totally as a SRAM

Cache disabling is possible It is possible to disable the shared cache

Cache Coherency Features

Information on the cache

coherency management is

available

Cache coherency mechanisms may be disabled

Cache coherency traffic may be partitioned inside a subset of

nodes on the platform

Information on the cache

coherency impact on timing

analyses is available

It is possible to provide acceptable bounds for the impact of cache

coherency traffic on core transactions in private caches

It is possible to provide acceptable bounds for the impact of cache

coherency traffic on transactions service in the interconnect

Shared Services Features

MULCORS

EASA

 Thales Avionics page 131 Réf. CCC/12/006898 – rev. 07

It is possible to restrict shared

services configuration to a high

privilege level

Accesses to the shared interrupt controller, PLL, shared watchdog,

power sources... can be restricted to the supervisor/hypervisor

without impacting accesses to other peripherals

One core cannot reset another core at user privilege level

Inter-core interrupts emission can

be controlled

Inter-core interrupts generation can be restricted to a supervisor or

a hypervisor

Memory mapping can be

protected against non-coherent

configurations

There is a centralized service of memory protection unit

Memory mapping allows I/O per

I/O isolation

All I/O may be accessed in different pages so that I/O management

can be partitioned by the MMU

RGL n°29

We recommend, for multi-core processor selection, that selection criteria should include Intrinsic

Reliability data delivered by the component manufacturer.

RGL n°30

We recommend, for multi-core processor selection, that selection criteria should include SEE analysis

(SER
35

 using processor manufacturer wording) delivered by the component manufacturer.

35

 SER : Software Error Rate

MULCORS

EASA

 Thales Avionics page 132 Réf. CCC/12/006898 – rev. 07

12.3. USAGE DOMAIN

This section introduces how and why determining the usage domain of each multi-core processor, and the

recommendations associated to the Interconnect usage Domain. This Usage Domain is required to manage

the behavior of the interconnect of the multi-core processor.

RGL n°1

When an Hypervisor is required to manage the behavior of the interconnect, the development of such a

Hypervisor shall fulfill ED-12/DO-178 (B or C) requirements at the corresponding Design Assurance

Level, at least the most stringent Airborne Software

RGL n°2

To be able to manage the behavior of the multi-core processor, for each device, an Interconnect Usage

Domain should be defined by the Airborne Embedded System provider and validated with the processor

manufacturer

RGL n°3

The Airborne Embedded System provider should implement control mechanisms (Hardware and/or

Software) on interconnect accesses in order to comply with the Interconnect Usage Domain.

RGL n°4

Transactions reordering increases the difficulty to characterize the interconnect protocol, we recommend to

disable interconnect reordering mechanisms to o ensure a better assurance in the transaction management.

RGL n°5

For Safety, we recommend to use the interconnect in a stable configuration under the Interconnect Usage

Domain restrictions that means the Airborne Embedded System provider should obtain from processor

manufacturer assurances that the interconnect configuration cannot be changed dynamically and silently.

RGL n°7

We recommend that the Interconnect Usage Domain determination should contain an Interconnect

Integrity Analysis performed under Airborne Embedded System Provider responsibility with the

assistance of Processor Manufacturer.

RGL n°8

We recommend that the Interconnect Usage Domain determination should contain analysis regarding the

interconnect protocol that shall provide lossless transactions.

MULCORS

EASA

 Thales Avionics page 133 Réf. CCC/12/006898 – rev. 07

RGL n°9

The Interconnect Usage Domain definition should limit the number and the complexity of inter-core

conflict situations in order to give tighter bounds for their impact on the timing variability of transaction

services.

RGL n°10

The Interconnect Usage Domain definition should prevent all occurrences of undesirable conflicts by

taking into account pessimistic timing hypothesis when it is not possible to determine bounds on the timing

variability on transaction services.

RGL n°11

We recommend that observations and tests performed by the Airborne Embedded System Provider on

timing variability on transactions services should be validated by the processor manufacturer according to

the Interconnect Usage Domain hypothesis.

12.4. CACHE COHERENCY

RGL n°12

We recommend that robust partitioning for shared cache should be enforced by defining hardware

configuration for cache partitioning mechanisms or should be enforced by software management

(hypervisor for example) if shared cache is configured as SRAM when partitioned Operating System is

deployed simultaneously on different cores and use shared cache.

RGL n°13

We recommend, preventing undesirable behavior, disabling cache coherency mechanism when partitioned

Operating Systems is deployed on each core with no shared memory between cores.

RGL n°14

We recommend, when cache coherency is enable, bounding the timing variability when core access to its

private cache - finding upper bounds on cache coherency traffic impact -.

RGL n°15

We recommend confining cache coherency traffic between the concerned cores and peripherals that require

it for the correct execution of embedded software.

RGL n°25

We recommend that multitasked Airborne Software design should minimize the use of cache coherency

mechanisms in order to be compliant with the Interconnect Usage Domain.

MULCORS

EASA

 Thales Avionics page 134 Réf. CCC/12/006898 – rev. 07

12.5. OPERATING SYSTEM & TASKS ALLOCATIONS

RGL n°6

To avoid contention between cores, and between cores and shared resources, we recommend to use

centralized managed arbitration when the interconnect is not a full crossbar.

RGL n°18

We recommend, in multi-core configurations, not to authorize one core, under USER privilege level, to be

able to reset another core. Only Hypervisor or Supervisor (if hypervisor doesn’t exist) have the

authorization to perform this reset.

RGL n°23

We recommend the use of partitioned scheduling algorithms and static allocation of tasks to cores that will

be decided at Design Time and forbidden at Run Time.

RGL n°24

We recommend, when Airborne Software is a multitasked one that critical sections should be explicitly

protected by semaphores in case of cooperative programming.

RGL n°26

We recommend, if SMP mode is selected by the platform provider for the Operating System that processes,

threads or tasks are statically allocated to cores to achieve determinism and repeatability.

RGL n°27

We recommend, if the Avionics Software Behavior is not known by the platform supplier and AMP mode

for the Operating System is selected, the use of a Hypervisor to master the behavior of the Interconnect

Usage Domain.

12.6. SHARED SERVICES

RGL n°16

We recommend restricting to hypervisor or supervisor (when hypervisor doesn’t exist) level the

configuration of shared services. Multiple instances of privileged software running on each core should

rely on a single static configuration that is determined at design time.

RGL n°17

We recommend that implementation of semaphores should take in account potential deadlocks due to

shared reservation stations.

MULCORS

EASA

 Thales Avionics page 135 Réf. CCC/12/006898 – rev. 07

12.7. CORES

RGL n°19

We recommend that:

1 The use of inter-core interrupts should be restricted to supervisor or hypervisor.

2 The conditions that rule the use of inter-core interrupts should be documented.

3 The Airborne Embedded System provider should provide evidence that all instances of privileged

software deployed on each cores comply with these rules.

RGL n°20

We recommend that the configuration of MMUs should be performed only at the Hypervisor or Supervisor

level – when the Hypervisor does not exist – in order to prove that spatial isolation enforcement relies on a

single configuration for the whole platform.

12.8. PERIPHERALS

RGL n°21

We recommend that the Interconnect Usage Domain should specify atomic access patterns to the main

memory to provide tighter bounds on timing variability of memory transactions,

We recommend that Worst Case Response Time should be determined for these patterns and Memory

transactions should be encapsulated inside them.

RGL n°22

We recommend that accesses to shared I/O dealing with configuration should be restricted to the

Hypervisor or Supervisor level – if the Hypervisor level does not exists – access patterns to these I/O

should be documented in the Interconnect Usage Domain.

12.9. FAILURE MITIGATION

RGL n°28

We recommend, for mitigation means, that the Interconnect Usage Domain should be defined to act as a

fault container between cores.

MULCORS

EASA

 Thales Avionics page 136 Réf. CCC/12/006898 – rev. 07

13. REFERENCES

RTCA/DO-178B :Software Considerations in Airborne Systems and Equipment Certification. (1992). RTCA/DO-178B
:Software Considerations in Airborne Systems and Equipment Certification.

SAE/ARP-4754 : Certification Considerations for Highly-Integrated or Complex Aircraft Systems. (1996). SAE/ARP-
4754 : Certification Considerations for Highly-Integrated or Complex Aircraft Systems.

ARINC-653 : Avionics Application Software Standard Interface. (1997). ARINC-653 : Avionics Application Software
Standard Interface.

RTCA/DO-297 : Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations. (2005).
RTCA/DO-297 : Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations.

Agrou, H., Sainrat, P., Faura, D., Gatti, M., & Toillon, P. (2011). A Design Approach For Predictable And Efficient
Multi-Core Processor For Avionics.

Agrou, H., Sainrat, P., Gatti, M., & Toillon, P. (2012). Mastering The Behavior Of Multicore Systems To Match
Avionics Requirements.

ARM. (2012). ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition.
ARM. (2012). CoreLink™ CCI-400 Cache Coherent Interconnect Technical Reference Manual.
ARM. (2012). Cortex™-A15 MPCore™ Technical Reference Manual Revision: r3p2.
Blake, G., Dreslinski, R. G., & Mudge, T. (2009). A survey of multicore processors. Signal Processing Magazine,

IEEE, 26(6), 26-37.
Bob, G., Joseph, M., Brian, P., Kirk, L., Spencer, R., Nikhil, G., et al. (2011). Handbook For The Selection And

Evaluation Of Microprocessors For Airborne Systems. Federal Aviation Administration - U.S. Department of
Transportation.

Chattopadhyay, S., Roychoudhury, A., & Mitra, T. (2010). Modeling shared cache and bus in multi-cores for timing
analysis. (pp. 6:1--6:10). ACM.

Craveiro, J. {., Rufino, J., & Singhoff, F. (2011). Architecture, mechanisms and scheduling analysis tool for multicore
time- and space-partitioned systems. SIGBED Rev., 8, 23-27.

Davis, R., & Burns, A. (2009). A Survey of Hard Real-Time Scheduling Algorithms and Schedulability Analysis
Techniques for Multiprocessor Systems. techreport, University of York, Department of Computer Science.

Forsberg, H., & Karlsson, K. (2006). COTS CPU Selection Guidelines for Safety-Critical Applications. IEEE, (pp. 1-
12).

Freescale. (2011). EREF 2.0: A Programmer’s Reference Manual for Freescale Power Architecture® Processors.
Freescale. (2012). e500mc Core Reference Manual.
Freescale. (2012). P4080 QorIQ Integrated Multicore Communication Processor Family Reference Manual, Rev. 1,.
Green, B., Marotta, J., Petre, B., Lillestolen, K., Spencer, R., Gupta, N., et al. (2011). Handbook for the Selection and

Evaluation of Microprocessors for Airborne Systems.
Gu, Z., & Zhao, Q. (2012). A State-of-the-Art Survey on Real-Time Issues in Embedded Systems Virtualization.

Journal of Software Engineering and Applications, 05(04), 277-291.
Gustavsson, A., Ermedahl, A., Lisper, B., & Pettersson, P. (2010). Towards WCET Analysis of Multicore

Architectures using UPPAAL. (pp. 103-113). {\"{O}}sterreichische Computer Gesellschaft.
Hardy, D. (2010). Analyse pire cas pour processeur multi-coeurs disposant de caches partagés. THESE,

Universit{\'e} Rennes 1.
Hardy, D. (2010). Analyse pire cas pour processeur multi-coeurs disposant de caches partagés. THESE, Université

Rennes 1.
Jean, X., Gatti, M., Faura, D., Pautet, L., & Robert, T. (2012). Ensuring Robust Partitioning In Multicore Platforms For

IMA Systems.
Kumar, R., Zyuban, V., & Tullsen, D. M. (2005). Interconnections in Multi-Core Architectures: Understanding

Mechanisms, Overheads and Scaling. SIGARCH Comput. Archit. News, 33, 408-419.
Mahapatra, R. N., & Ahmad, S. (2006). Microprocessor Evaluations For Safety-critical, Real-time Applications:

Authority For Expenditure No. 43 Phase 1 Report. DOT/FAA/AR-06/34, Federal Aviation Administration, U.S.
Department of Transportation.

Moscibroda, T., & Mutlu, O. (2007). Memory performance attacks: denial of memory service in multi-core systems.
(pp. 18:1--18:18). USENIX Association.

Nowotsch, J., & Paulitsch, M. (2012). Leveraging Multi-core Computing Architectures in Avionics. European
Dependable Computing Conference, 0, 132-143.

Pellizzoni, R., & Caccamo, M. (2010). Impact of Peripheral-Processor Interference on WCET Analysis of Real-Time
Embedded Systems. IEEE Trans. Comput., 59(3), 400-415.

MULCORS

EASA

 Thales Avionics page 137 Réf. CCC/12/006898 – rev. 07

Pitter, C. (2008). Time-predictable memory arbitration for a Java chip-multiprocessor. (pp. 115-122). ACM.
Rushby, J. (1999). Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance. Computer

Science Laboratory,SRI International, Menlo Park. NASA Langley Technical Report Server.
Schoeberl, M., & Puschner, P. (2009). Is Chip-Multiprocessing the End of Real-Time Scheduling? OCG.
Shah, H., Raabe, A., & Knoll, A. (2011). Priority division: A high-speed shared-memory bus arbitration with bounded

latency., (pp. 1-4).
Smith, J. E., & Nair, R. (2005). The Architecture of Virtual Machines. Computer, 38, 32-38.
Texas-Instruments. (2011). DSP CorePac User Guide.
Texas-Instruments. (2012). TMS320C6678 - Multicore Fixed and Floating-Point Digital Signal Processor.
Ungerer, T., Cazorla, F., Sainrat, P., Bernat, G., Petrov, Z., Rochange, C., et al. (2010). Merasa: Multicore Execution

of Hard Real-Time Applications Supporting Analyzability. IEEE Micro, 30, 66-75.
VanderLeest, S. (2010). ARINC 653 hypervisor., (pp. 5.E.2-1 -5.E.2-20).
Wilding, M. M., Hardin, D. S., & Greve, D. A. (1999). Invariant Performance: A Statement of Task Isolation Useful for

Embedded Application Integration. (pp. 287--). IEEE Computer Society.
Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., et al. (2008). The worst-case execution-

time problem\—overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3), 36:1--
36:53.

Yan, J., & Zhang, W. (2008). WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches. (pp. 80-
89). IEEE Computer Society.

MULCORS

EASA

 Thales Avionics page 138 Réf. CCC/12/006898 – rev. 07

14. APPENDIXES

14.1. REVIEW OF EXISTING EASA GUIDANCE IN EASA CM SWCEH-001 ISS. 1 REV. 1

EASA CM SWCEH-001 section 9 is listing items [1] to [16] requesting activities documented depending

on DAL and Complexity. Those items are recollected and a summary is provided in table below.

Comments and suggestions are raised along with this recollection. Multi-core aspects already addressed in

EASA CM SWCEH-001 section 9 are also collected.

In addition, COTS Graphical Processors (CGP’s) are considered highly complex devices with embedded

multi-processing capabilities. So it was interesting to look at the associated guidance for CGP’s, compared

with the one available for COTS. CGP’s are addressed by EASA CM SWCEH-001 section 10 but with a

different approach from other COTS.

14.1.1. Review of EASA CM SWCEH-001

Review of Section 9 on COTS and section 10 on CGP’s is illustrated in the table below:

Item Summary Multi-Core Comments & Suggestions CGP

[1] Classification (with

respect to criticality,

e.g. DAL and with

respect to

complexity, e.g.:

Simple, Complex

and Highly-

Complex)

Multi-core are

“automatically”

classified as

Highly

Complex.

Identification of novelty of the

technology or of the device itself

should be added as part of this

item for an overall assessment.

In addition, a distinction should be

made between assessment of the

device, based on a descriptive

approach; followed by

classification as

Simple/Complex/Highly-

Complex, then by the selection of

the route to compliance (i.e. what

are the activities recommended to

be performed?)

Refer to

SWCEH-001

section 10.1. :

CGP’s are

known to “use

multiple

embedded micro-

processors that

run

asynchronously”.

CGP’s are

”viewed as:

“devices of high

complexity”

[2] Device data (user’s

manual, datasheet,

errata sheets and

user’s manual errata

sheets, and

installation manual)

Multi-core to

meet same

objectives as

for COTS CEH.

Data must be collected in the same

manner as for any other COTS

CEH. COTS Multi-Core does not

imply new features with respect to

data to be collected.

Refer to

SWCEH-001

section 10.3 Item

e. Continued

Monitoring of

Supplier Data.

MULCORS

EASA

 Thales Avionics page 139 Réf. CCC/12/006898 – rev. 07

Item Summary Multi-Core Comments & Suggestions CGP

[3] Design data (when

available or when

not available)

Multi-core

design data

may not be

available due to

strong

proprietary

restrictions.

Electronic Component

Management Data should include

design data, if available.

Part of the route to compliance

should include data collection

such as evidence per ED-80/DO-

254 section 11.2.1 (1 to 7)

possibly complemented as

necessary, incl. for highly

complex Multi-core processors.

As already allowed per ED-

80/DO-254 section 11.3, Service

Experience can be a means to

substantiate assurance.

Refer to

SWCEH-001

section 10.2

Items 1

Electronic

Component

Management.

[4] Usage Domain

(Definition and

Verification)

Multi-core

Usage Domain

Definition may

contain more

specific

features.

Distinguish between assessment of

the device characteristics and

identification of the limitations,

then verification of the

implementation within those

limits.

Refer to

SWCEH-001

section 10.3 Item

f. Unintended

Functionality

[5] Usage Domain

(Validation)

Multi-core

Usage Domain

V. and V. may

imply more

specific

activities.

Distinguish between Validation of

the Usage Domain (UD) &

Verification of the device versus

its UD. Validation of UD is

whenever the capabilities of the

device meet Intended Functions;

ensure Safety Objectives within

Foreseeable Conditions.

Distinguish also between

assessment of multi-core

functional characteristics that

could then be grouped with item

[1] as descriptive criteria of the

device; and the assessment of

impact of those various features

on other domains (Software,

System, Safety, Interfaces, Perfos,

etc.)

Same as above.

Note that the

approach to

CGP’s is just the

other way

around:

Unintended

Functionality

versus Usage

Domain as the

“Intended

Functionalities”

[6] Errata sheets

(Capture and

Control)

Multi-core to

meet same

objectives as

for COTS CEH.

This item might be grouped with

item [2] Device data, as it is also

required for all COTS except for

DAL C Simple COTS.

Refer to

SWCEH-001

section 10.3 Item

e. Continued

Monitoring of

Supplier Data.

MULCORS

EASA

 Thales Avionics page 140 Réf. CCC/12/006898 – rev. 07

Item Summary Multi-Core Comments & Suggestions CGP

[7] Errata sheets

(Assessment)

Same as above No specific feature with COTS

Multi-Core.

Same as above.

[8] Experience gained

(Errata

workarounds)

Same as above This item might be grouped with

item [13] as part of Service

Experience data. The most

important feature is that Errata

Workarounds should be

documented.

Not specifically

addressed for

CGP’s.

[9] Configuration

Management

Same as above This implies close cooperation

with the device manufacturer,

possibly including proprietary data

to be provided under a Non-

Disclosure Agreement (NDA).

Refer to

SWCEH-001

section 10.3 Item

e. Continued

Monitoring of

Supplier Data.

[10] Change Impact

Analysis

Same as above Same as above, and:

Relationship with item [12] Safety

should be established as the

impact on safety must be

considered.

Same as above.

See also

SWCEH-001

section 10.3 Item

c Variations

during

Production Life..

[11] Validation &

Verification

Same as above Reference to ED-79A/ARP-4754A

suggests a system-level V & V

activities.

Reference to V & V per ED-

80/DO-254 § 6 guidance should

be sufficient, except if assurance

can be obtained from overall (e.g.:

system-level) V & V activities.

Multi-Core processors are

generally driven via software such

as hyper-visors at the interface

with the Operating System. Hence

consideration on those divers

should be provided.

Not specifically

addressed for

CGP, except

consideration on

Software

Drivers. Refer to

SWCEH-001

section 10.3 Item

g.

MULCORS

EASA

 Thales Avionics page 141 Réf. CCC/12/006898 – rev. 07

Item Summary Multi-Core Comments & Suggestions CGP

[12] Safety Analysis

(Failure modes,

failure rates and

functional failures,

etc.)

Multi-core

Failure

Analysis may

not be

achievable.

Same as for COTS CEH in

general, an FMEA cannot be

performed, at least in a similar

way as for PLD. The FFPA per

ED-80/DO-254, as a more

qualitative approach, should be the

preferred method.

Additional research might be

necessary to determine which

failure analysis method would be

more suited for Multi-Core.

Refer to

SWCEH-001

section 10.3 Item

b. Failures due to

Common Failure

Mode and item h

Failure Rate; and

item d

Configurable

Devices.

[13] Service Experience

(identification of

PSE)

Multi-core to

meet same

objectives as

for COTS CEH.

It is important to note that hours of

Board/LRU/System, i.e. Lab

testing can be accounted for as

Service Experience. Simulated

operating hours could then be an

approach to generate ISE-like

data.

Refer to

SWCEH-001

section 10.2 Item

3. Product

Service

Experience.

[14] Service Experience

(validity of PSE)

Same as above Same as above. Same as above

[15] Architectural

Mitigation

Multi-core are

truly involved

in architectures.

Analysis of Common Causes of

failure or errors as part of the

Common Mode Analysis is a

classical activity of the overall

System Safety Analysis. The

software layer (e.g. : Hyper-visor)

embedded on the Multi-Core must

be considered in the architecture

mitigation.

Refer to

SWCEH-001

Section 10.3 Item

a Hazardously

Misleading

Information.

[16] Partitioning features Multi-core are

truly involved

in S/W

partitioning.

This item might be grouped with

item [12] Safety Analysis.

Analysis of robust partitioning is

one of the main method to show

that device capabilities adequately

support safety analysis. Note that

robust partitioning should include

both time, memory and

Input/output partitioning

Not really

applicable to

CGP at the

moment.

MULCORS

EASA

 Thales Avionics page 142 Réf. CCC/12/006898 – rev. 07

14.1.2. Multi-Core aspects already available in EASA CM SWCEH-001 Iss. 1 Rev. 1

Extract from item [1]:

If a COTS microcontroller has any of the following characteristics, it should be classified as Highly

Complex:

More than one Central Processing Unit (CPU) are embedded and they use the same bus (which

Extract from item [3]:

In case of a highly complex COTS microcontroller, if the component manufacturer’s public data and

training support are not sufficient to address the aspects above, then access to the component

manufacturer’s private data should be requested and established.

Extract from item [5]:

In the case of multi-core processor usage, an assessment of all specific multi-core functionalities or usual

CPU functionalities using the multi-core design should be performed. This assessment may include but is

not limited to: multi-processing strategy, simultaneous multi-threading, parallel internal bus management

and determinism, Very Long Instruction Word (VLIW), Single Instruction Multiple Data (SIMD), Vector

processing, internal memory/cache management, software impact on the Operating System and associated

middleware, partitioning impact, usage domain impact, external Databus impact, timing requirement

impact, safety requirement impact, and impact on the WCET strategy.

14.1.3. Structuring activities

A tentative grouping of EASA CM SWCEH-001 section 9 activities under the various items [1] to [16] into

an allocation of guidance to Hardware, Software, System and Safety and to other transverse domains is

analysed as follows, together with compliance of Multi-core:

Domain Reference to SWCEH-

001 Section 9 Items

Multi-Core Comments & Suggestions

System [5] Usage Domain

(Validity)

[10] Change Impact

Analysis

[15] Architecture

[16] Partitioning

Must

comply

including

for item

[16]

Partitioning

. Refer to

notes

below

table.

[11] Validation & Verification is referring to

ED-79(A)/ARP-4754(A), which is typically

the industry standard reserved for System

activities.

Suggestion is to make the difference between

Hardware V & V per ED-80/DO-254 and

System V & V per ED-79A/ARP-4754A.

Safety [1] Allocation of DAL

[5] Usage Domain

(Validity)

[12] Safety Analysis

Refer to

notes

below

table.

Item [10] Change Impact Analysis might also

be listed with the Safety domain as it is

essential to assess safety impact of the

change.

MULCORS

EASA

 Thales Avionics page 143 Réf. CCC/12/006898 – rev. 07

[15] Architecture

[16] Partitioning

Software [8] Errata workaround

[10] Change Impact

Analysis

[15] Architecture

[16] Partitioning

Must

comply in

particular

considering

hyper-

visor.

Refer to

notes

below

table.

The “hyper-visor” software driver would

have a fundamental involvement in

relationship to those activities: [8], [10], [15]

and [16].

Hardware [1] Description for

Classification

[2] Device data

[3] Design data

[4] Usage Domain

(Definition)

[6] Errata sheets (capture)

[7] Errata sheets

(Assessment)

[8] Errata workaround

[10] Change Impact

Analysis

[13] Service Experience

(identify.)

[14] Service Experience

(validity)

Must

comply as

COTS

Multi-Core

is basically

HW

Refer to

notes

below

table.

[11] Validation & Verification could be

added with respect to ED-80/DO-254 V & V.

[3] Design data is rarely available to the level

of detail that become useful to build H/W

design assurance. Note that some firmware

may be embedded in that H/W. However it is

still seen as H/W from the outside.

C/M [9] Configuration

Management

[10] Change Impact

Analysis

Must

comply

Refer to

notes

below

table.

None.

Q/A [3] Design data Must

comply

Refer to

notes

below

table.

See comments made above with respect to

Hardware.

V&V [11] Validation &

Verification

Must

comply

See comments made above with respect to V

&V at system and hardware levels.

MULCORS

EASA

 Thales Avionics page 144 Réf. CCC/12/006898 – rev. 07

Notes :

[1] Encompass Allocation of DAL related to Safety and Classification based on a Description of the

device.

[3] Design data is listed in both Hardware and Quality Assurance, whose combination is useful,

particularly when actual life-cycle design data is not available.

[5] Usage Domain (Validity) is listed in both System and Safety domains as Usage Domain validation is

the main feature to be substantiated by those two domains.

[8] Errata workaround is listed in both Hardware and Software without any doubt.

[10] Change Impact Analysis is associated with Configuration management and is listed in both System

and Software in addition to Hardware. It could also be listed in the Safety domain.

[15] Architecture and [16] Partitioning are listed in System, Safety and Software domains, i.e. outside the

sole Hardware domain.

MULCORS

EASA

 Thales Avionics page 145 Réf. CCC/12/006898 – rev. 07

14.2. EXAMPLE OF PROCESSOR CLASSIFICATION

In regard to the multi-core processors criteria, we propose to establish a classification of the three first architectures that is Freescale, ARM and

Texas plus the Altera Cyclone V:

 QorIQ™ – P4080 – Freescale

 CORTEX® A15 MPCore™ – ARM

 TMS320C6678™ – Texas Instruments

 Altera – Cyclone V

 SADM UMA

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

Interconnect features

1

ARBITRATION RULES

DOCUMENTATION IS

AVAILABLE

No

Partially

It is the case for peripheral

accesses through

Corelink™, but not inside

the snoop control unit

N/A

No for the snoop control

unit

To be defined by the user

for peripheral accesses

2
THE ARBITER IS

CENTRALIZED
Partially

N/A for the snoop control

unit

No for Corelink™: an

arbiter per peripheral

No: An arbiter per

peripheral
N/A

MULCORS

EASA

 Thales Avionics page 146 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

3

THE ARBITER CAN

SERVE SEVERAL

TRANSACTIONS

SIMULTANEOUSLY

Yes: up to 4 transactions

per bus cycle
Yes Yes Yes

4

THE ARBITRATION

POLICY IS

CONFIGURABLE

N/A

SCU: N/A

Corelink™: Yes, static

priorities are configurable

Yes: static priorities

configurable for bus

masters

SCU: N/A

5

POSSIBLE

CONFIGURATIONS

FOR ARBITRATION

POLICY (SUBSET OF)

N/A

Fixed priorities with Least

Recently Granted policy in

the same priority domain

Fixed priorities

N/A in the same priority

domain

N/A

6

ARBITER INTERNAL

LOGIC INFORMATION

IS AVAILABLE

N/A N/A N/A N/A

7

DEVICE

ALLOCATION RULES

INFORMATION IS

AVAILABLE

N/A N/A N/A

8

DEVICE

ALLOCATION IS

CONFIGURABLE

N/A N/A N/A

MULCORS

EASA

 Thales Avionics page 147 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

9

POSSIBLE

CONFIGURATIONS

FOR DEVICE

ALLOCATION

(DEVICE PER

DEVICE)

(SUBSET OF)

N/A N/A N/A

10

INFORMATION ON

THE NETWORK

TOPOLOGY IS

AVAILABLE

No
SCU: N/A

Corelink™: crossbar

Yes, interconnect matrix

available in the public

documentation

SCU: N/A

11

SEVERAL PATHS

EXIST FROM ONE

NODE TO ANOTHER

N/A
SCU: N/A

Corelink™: No
No N/A

12

INFORMATION ON

THE ROUTING RULES

IS AVAILABLE

N/A

This criteria is irrelevant because there is always one

single path between two nodes in the interconnect

13

POSSIBLE

CONFIGURATIONS

FOR ROUTING RULES

(SUBSET OF)

N/A

MULCORS

EASA

 Thales Avionics page 148 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

14

INFORMATION ON

THE DIFFERENT

KINDS OF

TRANSACTIONS IS

AVAILABLE

No

SCU: No

Corelink™: Yes, they are

described in the AMBA®

ACE protocol

specifications

No SCU: No

15

INFORMATION ON

THE RELATION

BETWEEN ASSEMBLY

INSTRUCTION

EXECUTED AND

TRANSACTIONS SENT

AVAILABLE

No N/A No No

16

THE INTER-

PROCESSORS

INTERRUPTIONS CAN

BE BLOCKED BY THE

INTERCONNECT

No N/A N/A N/A

17

SNOOPING

MECHANISM CAN BE

DISABLED

Yes Yes N/A N/A

18

SNOOPING

MECHANISM CAN BE

CONFINED TO A

SUBSET OF CORES

Yes No N/A N/A

MULCORS

EASA

 Thales Avionics page 149 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

19

THE INTERCONNECT

PROVIDES A CORE

SYNCHRONIZATION

MECHANISM

N/A N/A N/A N/A

Shared resources features

20

ACCESS

RESTRICTION TO THE

INTERRUPT

CONTROLLER FOR

THE SUPERVISOR IS

POSSIBLE

Yes, in the MMU

configuration

Yes, in the MMU

configuration
N/A N/A

21

EACH CORE HAS ITS

PRIVATE CLOCK

SOURCE OR PLL

CIRCUIT

No, there are three PLL to

be mapped on eight cores.

The clock source is shared

No, all cores share the

same clock signal
N/A N/A

22

THERE IS A SINGLE

CLOCK FOR ALL

CORES

 Yes N/A

23

THERE IS A

PROTECTION

MECHANISM THAT

PREVENT A PLL

CONFIGURATION TO

BE CORRUPTED AT

RUNTIME

PLL are configured at

startup, so they are

protected at runtime

N/A N/A N/A

MULCORS

EASA

 Thales Avionics page 150 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

24

THE MAPPING

BETWEEN

AVAILABLE PLL AND

CORES IS

CONFIGURABLE

Yes

25

THE POWER SOURCE

OF EACH CORE CAN

BE PROTECTED FROM

OTHER CORES

CORRUPTION

N/A N/A N/A N/A

26

A CORE CAN BE

HALTED BY OTHER

CORES

N/A N/A N/A N/A

27

A CORE CAN BE SET

IN SLEEP MODE BY

OTHER CORES

N/A N/A N/A N/A

28
EACH CORE HAS A

PRIVATE TIMER
Yes

Yes, but located in the

shared space

Yes, but located in the

shared space
No

29

TIMERS CAN BE FED

BY THE SAME CLOCK

SOURCE

Yes Yes Yes Timers are provided

within the FPGA fabric.

Their mapping on the

cores is user defined 30

TIMERS CAN BE FED

BY AN EXTERNAL

CLOCK SOURCE

Yes N/A N/A

MULCORS

EASA

 Thales Avionics page 151 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

31

TIMERS CAN

GENERATE

INTERRUPTS

Yes Yes Yes Timers are provided

within the FPGA fabric.

Their mapping on the

cores is user defined 32
TIMERS HAVE THEIR

OWN CLOCK CIRCUIT
N/A N/A N/A

33

IT IS POSSIBLE TO

PERFORM A RESET

ON ONE CORE

Yes Yes Yes N/A

34
A CORE CAN RESET

ANOTHER CORE
Yes N/A N/A N/A

35

THERE IS ONE

WATCHDOG TIMER

PER CORE

Yes N/A
Yes, but located in the

shared space
N/A

36

IT IS POSSIBLE TO

RESTRICT A

WATCHDOG

CONFIGURATION TO

ONE CORE

N/A N/A N/A N/A

Shared cache features

37

THE SHARED CACHE

OR SCRATCHPAD HAS

SEVERAL READ AND

WRITE PORTS

Yes, four read ports and

one write port

Yes, the cache is

decomposed in four tag

banks that contain several

data banks and can be

accessed in parallel

N/A N/A

MULCORS

EASA

 Thales Avionics page 152 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

38

IT IS POSSIBLE TO

PARTITION A SHARED

CACHE PER WAY

Yes N/A

Irrelevant criteria

N/A

39

IT IS POSSIBLE TO

PARTITION A SHARED

CACHE PER LINES

No No N/A

40

IT IS POSSIBLE TO

CONFIGURE A

SHARED CACHE IN

SRAM

Yes with configurable size

(64K, 256K, 1M) for each

cache

No, but the L2 memory

systems can embed

internal RAM

The Multicore Shared

Memory (MSM) is already

a shared SRAM

N/A

41

IT IS POSSIBLE FOR

ONE CORE TO LOCK

SOME OF ITS

CONTENT IN THE

CACHE

Yes, cache locking is

possible line per line
No

Irrelevant criteria

N/A

42

IT IS POSSIBLE FOR

ONE CORE TO LOCK

SOME OF ANOTHER

CORE’S CONTENT IN

THE CACHE

N/A N/A N/A

Core features

43
THE INSTRUCTION

SET IS COMPLETE
N/A N/A N/A N/A

MULCORS

EASA

 Thales Avionics page 153 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

44

SEVERAL DIFFERENT

INSTRUCTION SETS

ARE SUPPORTED

No, only Power ISA™ v

2.06 supported

Yes: ARM v7,

THUMB™, JAZELLE™

ISA supported

No, only TMS320C66x™

ISA is supported

Yes: ARM v7, THUMB™

and JAZELLE™ ISA are

supported

45
INSTRUCTIONS HAVE

THE SAME LENGTH
Yes No N/A No

46

THE INSTRUCTION

SET CAN BE

EXTENDED (MICRO-

INSTRUCTIONS CAN

BE DEFINED)

N/A

Yes, this is possible

through coprocessor

instructions

N/A

Yes, this is possible

through coprocessor

instructions

47

THE INSTRUCTION

SET IS FULLY

SUPPORTED

No, but the non supported

features are documented.

Aliases are also defined

for some assembly

instructions

N/A Yes N/A

48

THE INSTRUCTION

SET SUPPORTS

HYPERVISOR

PRIVILEGE LEVEL

Yes, hypervisor privilege

obtained with a system call

instruction

Yes, the control

coprocessor can provide

hypervisor privilege

No, only two privilege

levels
N/A

49

INSTRUCTIONS CAN

BE RESTRICTED TO

SUPERVISOR OR

HYPERVISOR

PRIVILEGE LEVEL BY

SW CONFIGURATION

N/A N/A N/A N/A

MULCORS

EASA

 Thales Avionics page 154 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

50

THE INSTRUCTION

UNIT CAN FETCH

SEVERAL

INSTRUCTIONS IN

PARALLEL

Yes, up to four N/A
Yes, 8 instructions per

fetch
N/A

51

THE INSTRUCTION

UNIT HAS A PRE-

FETCH SERVICE

DEPENDING ON A

BRANCH UNIT

Yes Yes N/A N/A

52

THE PRE-FETCH IS

LIMITED INSIDE A

MEMORY PAGE

N/A N/A N/A N/A

53

THE BRANCH

PREDICTION CAN BE

DISABLED

Yes Yes N/A N/A

54

THE BRANCH

PREDICTION POLICY

IS CONFIGURABLE

STATIC/DYNAMIC

Yes N/A N/A N/A

55

THE LSU REORDERS

THE MEMORY AND

IO TRANSACTIONS

Yes N/A N/A N/A

MULCORS

EASA

 Thales Avionics page 155 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

56

TRANSACTION

REORDERING CAN BE

DISABLED

N/A N/A N/A N/A

57

INTERNAL

REGISTERS ARE

RENAMED BEFORE

INSTRUCTION

EXECUTION

Yes Yes N/A Yes

58

THE MMU IS

CENTRALIZED OR

DISTRIBUTED AMONG

THE CORES

One MMU per core, but

additional filter on

addresses through the

Local Access Windows at

platform level

One MMU per core

managed by the CP15

coprocessor

One Memory Protection

Unit (no memory

virtualization service) per

core

One MMU per core

59
TLB STORAGE

CHARACTERISTICS

L1 data/instruction TLB

L2 unified TLB

Fixed 4K pages, and

variable 4K to 4G pages

L1 data/instructions TLB

L2 unified TLB

Translation Table stored in

the cache or the main

memory

Fixed 4K pages in L1 TLB

Variable 4K to 16M pages,

support for Large Pages

2M and 1G

Programmable pages sizes N/A

MULCORS

EASA

 Thales Avionics page 156 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

60

THE TLB

REPLACEMENT

ALGORITHM IS

IMPLEMENTED IN

HARDWARE OR

SOFTWARE

Hardware for L1

data/instruction TLB,

software for unified L2

TLB

Coherency L1/L2 ensured

by hardware

Hardware replacement

mechanism: when a L2

TLB miss occurs, the

MMU performs a

Translation Table Walk

Software management of

the memory protection

unit

N/A

61
THE PAGE SIZE IS

FIXED OR VARIABLE
Both Fixed in L1, variable in L2 Variable N/A

62
THE MMU DETECTS

PAGES OVERLAPPING
Yes N/A N/A N/A

63

PRIVATE CACHE AND

SCRATCHPADS

CONTENTS

32k data, 32 K instruction

L1

256k unified L2

32k data, 32k instruction

32K data, 32K instruction

Both can be configured

partially or fully as SRAM

A store instruction cannot

be written in L1 data cache

32k data, 32k instruction

64

PRIVATE CACHE

REPLACEMENT

POLICY

Least Recently Used Least Recently Used

The cache is one way, so

the replacement policy is

trivial

Least recently Used

Hardware accelerators for network processing features

65

THE OVERALL

ARCHITECTURE IS

DOCUMENTED

Partially for Data Path

Acceleration Architecture

(network stream

processing)

Irrelevant criteria: The

CORTEX® A15

MPCore™ IP is not

provided with I/O devices

for network processing

Network coprocessor and

multicore navigator.

Public documentation

available

To be defined at design

time by the user

MULCORS

EASA

 Thales Avionics page 157 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

66

THE HARDWARE

ACCELERATOR

EMBEDS MICROCODE

Yes, in the Frame

Manager. This microcode

is proprietary

Assumed yes, as there is a

Rx core and a Tx core

67

THE HARDWARE

ACCELERATOR

CONTAINS INTERNAL

MEMORY

Yes Yes

68

THE ACCELERATOR

INTERNAL MEMORY

IS PROTECTED

AGAINST SEU/MBU

All internal memory is

protected with ECC
N/A

69

THE HARDWARE

ACCELERATOR CAN

BE BYPASSED

Yes: for network usage, a

network controller can be

mapped on the PCI or

PCIe bus rather than

DPAA

Yes: for a network usage,

a network controller can

be mapped on the PCIe

MULCORS

EASA

 Thales Avionics page 158 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

Support for debug

70

IT IS POSSIBLE TO

DEBUG ON A SINGLE

CORE WITHOUT

AFFECTING THE

OTHERS

Yes, internal performance

monitors on each core,

JTAG interrupt available

core per core, GDB stub

provided with TOPAZ©

(Freescale hypervisor),

HyperTRK library for

JTAG debug on top of

TOPAZ©

Performance monitors,

ARM v7 debug unit,

CoreSight™ interface

Yes using the Debug and

trace proprietary solution
N/A

71

IT IS POSSIBLE TO

DEBUG ON ALL

CORES

SYNCHRONOUSLY

N/A N/A N/A N/A

72

IT IS POSSIBLE TO

HAVE A TRACE OF

THE TRANSACTIONS

GENERATED BY EACH

CORES

Partially: Aurora interface

gives a limited view of the

Corenet™ activity

Yes: Program Trace

Macrocell, which is a real-

time transaction tracer

included in CoreSight™.

Yes using the Debug and

trace proprietary solution
N/A

Manufacturer related criteria

73

THE

MANUFACTURER HAS

EXPERIENCE IN THE

AVIONIC DOMAIN

Yes N/A Yes No

MULCORS

EASA

 Thales Avionics page 159 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

74

THE

MANUFACTURER IS

INVOLVED IN THE

CERTIFICATION

PROCESS FOR THE

STUDIED PLATFORM

Yes N/A N/A N/A

75

THE

MANUFACTURER

PUBLISHES SPECIFIC

COMMUNICATIONS

Yes No No No

76

THE

MANUFACTURER HAS

A SUFFICIENT LIFE

EXPECTANCY

Yes Yes Yes Yes

77

THE

MANUFACTURER

ENSURES A LONG

TERM SUPPORT

N/A N//A N/A N/A

78

THE

MANUFACTURER

PROVIDES

INFORMATION ON

THE PROCESSOR

DESIGN

Partially under NDA
Partially, with the

functional description
Yes Partially

MULCORS

EASA

 Thales Avionics page 160 Réf. CCC/12/006898 – rev. 07

ID Criteria
Freescale – QorIQ™

P4080

ARM – CORTEX® A15

MPCore™
TI – TMS320C6678™ Altera – Cyclone V

79

THE

MANUFACTURER

PROVIDES

INFORMATION ON

BUGS AND ERRATA

Yes N/A N/A N/A

80

THE

MANUFACTURER

PROVIDES

INFORMATION ON

SER (SEU/MBU)

Partially under NDA N/A N/A N/A

Postal address Visiting address Tel
Fax
Mail
Web

