

Research Project EASA.2012/04

COTS-AEH – Use of complex COTS

(Commercial-Off-The-Shelf) in airborne

electronic hardware – failure mode and

mitigation

Disclaimer

This study has been carried out for the European Aviation Safety Agency by an
external organization and expresses the opinion of the organization undertaking
the study. It is provided for information purposes only and the views expressed in
the study have not been adopted, endorsed or in any way approved by the
European Aviation Safety Agency. Consequently it should not be relied upon as a
statement, as any form of warranty, representation, undertaking, contractual, or
other commitment binding in law upon the European Aviation Safety Agency.

Ownership of all copyright and other intellectual property rights in this material
including any documentation, data and technical information, remains vested to
the European Aviation Safety Agency. All logo, copyrights, trademarks, and
registered trademarks that may be contained within are the property of their
respective owners.

Reproduction of this study, in whole or in part, is permitted under the condition
that the full body of this Disclaimer remains clearly and visibly affixed at all times
with such reproduced part.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 1 Réf. CCC/13/001303 – rev. 05

EASA.2012.C15
“COTS-AEH” Project.

COTS-AEH - USE OF COMPLEX COTS

(COMMERCIAL-OFF-THE-SHELF) IN AIRBORNE
ELECTRONIC HARDWARE – FAILURE MODE AND

MITIGATION

THALES AVIONICS

Dossier ref. CCC/13/001303– Rev. 05

Authors: Philippe BIETH, Vincent BRINDEJONC

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 2 Réf. CCC/13/001303 – rev. 05

REVISIONS

Revision Date Effect on § Description

00.1 13/02/2013 - Creation of the document

00.2 01/03/2013 All First draft delivery to EASA

00 11/03/2013 All First Release of the COTS-AEH Report

01 09/04/2013 All First Release with integration of EASA

comments

02 31/05/2013 All Second Release of the COTS-AEH Report

03 07/06/2013 All Third release for Cologne meeting

04 20/09/2013 5, 6, 7, 8, 9, 10 Fourth release: final draft for comments

05 27/11/2013 3, 5, 6, 9, 10 Final version with comments taken into account

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 3 Réf. CCC/13/001303 – rev. 05

Table of Content

THALES DISCLAIMER ... 11

ACKNOWLEDGEMENTS .. 13

EXECUTIVE SUMMARY ... 15

1 BACKGROUND .. 17
1.1 Concern ... 17
1.2 Purpose of the Survey .. 19

1.3 Methodology Outline ... 20
1.4 Structure of the Report ... 21

2 AIMS AND OBJECTIVES ... 23
2.1 EASA Expectations .. 23
2.2 Project objectives ... 23

3 GLOSSARY ... 25
3.1 Acronyms .. 25

3.2 Key Definitions ... 26
3.2.1 Definitions relatives to hardware items classification ... 26
3.2.2 Definitions relative to Board and COTS Architectures ... 27

3.2.3 Definitions relative to risk analysis ... 29

4 LITERATURE REVIEW ... 31
4.1 Safety related avionic standards & guidelines .. 31
4.2 Others industrial sectors standard ... 32

4.3 Studies on COTS–AEH usage in Avionics... 32

5 STATE OF THE ART ... 35
5.1 Generic Embedded Computing Architecture ... 35
5.2 COTS Selection .. 36

5.3 State of the art of embedded COTS ... 37
5.3.1 Bridges and switches ... 37
5.3.2 Avionics Specific interface drivers .. 40
5.3.3 Memories ... 42

5.3.4 Microcontrollers .. 47

6 METHODOLOGY .. 57
6.1 Breakdown level ... 57
6.2 Abstraction Level ... 58
6.3 Failure modes at logical level .. 58

6.3.1 List of failure modes .. 58

6.3.2 Comprehensiveness of the failure model ... 61
6.3.3 Particular failure modes at the hardware – software interface .. 63

6.4 Fault classification ... 63

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 4 Réf. CCC/13/001303 – rev. 05

6.5 General procedure ... 65
6.5.1 General overview ... 65
6.5.2 Top - down approach ... 66
6.5.3 Bottom - up approach .. 66
6.5.4 Failures Detection and mitigation .. 67

7 COTS INTERFACE FAILURE MODE ANALYSIS ... 69
7.1 introduction .. 69

7.2 Discrete I/O ... 70
7.2.1 Description ... 70
7.2.2 Failure modes ... 71
7.2.3 Intrinsic failure mitigation mechanisms .. 72

7.3 Serial Peripheral Interface (SPI) bus ... 72
7.3.1 Description ... 72
7.3.2 Failure modes ... 73
7.3.3 Intrinsic failure mitigation mechanisms .. 75

7.4 Arinc 429 ... 75
7.4.1 Description ... 75
7.4.2 Failure modes ... 76
7.4.3 Intrinsic robustness of the physical layer... 77

7.4.4 Intrinsic failure mitigation mechanisms .. 78

7.5 MIL-STD-1553 ... 78
7.5.1 Description ... 78
7.5.2 Failure modes ... 82
7.5.3 Intrinsic robustness of the physical layer... 84

7.5.4 Intrinsic failure mitigation mechanisms .. 85

7.6 PCI bus ... 85
7.6.1 Description ... 85
7.6.2 Failure modes ... 88

7.6.3 Intrinsic failure mitigation mechanisms .. 90

7.7 PCIe bus .. 91
7.7.1 Description ... 91

7.7.2 Failure modes ... 94
7.7.3 Intrinsic robustness of the physical layer... 97

7.7.4 Intrinsic failure mitigation mechanisms .. 97

8 COTS INTERNAL FAULTS .. 101
8.1 introduction .. 101

8.2 Bridges .. 102
8.2.1 Introduction and Available data ... 102
8.2.2 Architecture description ... 103
8.2.3 Block study .. 104
8.2.4 Concluding remarks ... 122

8.3 ARINC 429 Interface Drivers ... 122
8.3.1 Introduction and available data .. 122
8.3.2 Architecture description ... 123
8.3.3 Failure modes ... 125
8.3.4 Failure Detection & Mitigation ... 128

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 5 Réf. CCC/13/001303 – rev. 05

8.3.5 Concluding remarks ... 128

8.4 MIL-STD-1553 Interface Drivers .. 128
8.4.1 Introduction and available data .. 128
8.4.2 Architecture description ... 128
8.4.3 Failure modes ... 130

8.4.4 Intrinsic robustness of the physical layer and failure mitigation mechanisms 132
8.4.5 Concluding remarks ... 132

8.5 DDRx SDRAM memories ... 133
8.5.1 Introduction and available data .. 133
8.5.2 Architecture description ... 133

8.5.3 Block study .. 137
8.5.4 Failure Detection & Mitigation ... 142

8.5.5 Concluding remarks ... 142

8.6 Flash memories .. 143
8.6.1 Introduction and available data .. 143
8.6.2 Architecture description ... 143

8.6.3 Failure modes ... 145
8.6.4 Intrinsic robustness .. 146
8.6.5 Intrinsic failure mitigation mechanisms .. 146

8.6.6 Concluding remarks ... 146

8.7 Microcontrollers .. 147
8.7.1 Introduction and available data .. 147
8.7.2 Architecture description ... 148
8.7.3 Block study .. 149

8.7.4 Concluding remarks ... 162

8.8 Multicore Microcontrollers ... 162
8.8.1 Introduction and available data .. 162
8.8.2 Architecture description ... 164

8.8.3 Block study .. 166
8.8.4 Concluding remarks ... 179

9 DETECTION ISOLATION AND MITIGATION OF COTS DESIGN FAILURES .. 181
9.1 introduction .. 181
9.2 COTS Specification and test base mitigation .. 183

9.2.1 Inputs data and associated studies ... 183
9.2.2 COTS specifications .. 184
9.2.3 Tests with regard to specification and usage domain limitation.. 185

9.2.4 Test results and constraints on COTS specification .. 193

9.3 Mechanisms for detection and mitigation of design errors ... 195
9.3.1 Introduction .. 195
9.3.2 Internal failure detection / mitigation mechanisms ... 197

9.3.3 Mixed mechanisms .. 199
9.3.4 Architectural mechanisms ... 200
9.3.5 Monitoring Mechanisms for latent failures ... 218

10 CONCLUSION AND RESULT SUMMARY .. 221
10.1 Summary of report activities .. 221

10.1.1 Breakdown and Abstraction levels .. 221

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 6 Réf. CCC/13/001303 – rev. 05

10.1.2 Global analysis process .. 221

10.2 Implementation strategy proposal ... 222

11 REFERENCES .. 225

ANNEX 1: MAPPING OF A MULTICORE CONFIGURATION, CONTROL AND STATUS REGISTER (CCSR) 229

ANNEX 2: SUMMARY OF SUGGESTIONS .. 235

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 7 Réf. CCC/13/001303 – rev. 05

List of Figures

Figure 1: Typical evolution from microprocessor (IS0) to microcontroller (IS2 & IS3). 18
Figure 2: Typical Computer architecture. .. 35
Figure 3: example of PCI sub-network architecture through PCI-PCI Bridges. ... 38

Figure 4: schematic view of a switch .. 39
Figure 5: A switch in an A664 network. .. 40
Figure 6: DDC MIL-STD-1553 driver evolution (from http://www.ddc-

web.com/Images/New/Evolution.jpg). .. 42
Figure 7: Memory access evolution between SRAM (no controller) and DDR SDRAM (complex

controller). ... 43
Figure 8: Transfer of data on both edges of clock signal in a DDR (source [22]) .. 44

Figure 9: Simplified view of DDRx architecture. ... 45
Figure 10: NAND and NOR Flash from [80] .. 46
Figure 11: a typical board architecture around a MPC 4748. .. 47
Figure 12 : Internal Block diagram for the MPC8610. .. 48

Figure 13: typical MCU architecture with internal bus ... 49
Figure 14: MCU architecture with Switch. .. 49
Figure 15: Moore law (src. Wikipedia [8]) .. 50

Figure 16: IBM power 4 architecture. ... 52
Figure 17: Cell: example of a heterogeneous multicore processor. ... 53

Figure 18: Black box (left) and grey box (right) point of view on a COTS. Note: the white box point of

view has not been represented here. .. 57
Figure 19: Example of a logical state diagram for information transfer. Although some transition have been

hidden on the scheme, all are in principal possible unless some applicative restrictions. 59

Figure 20: representation of message loss. .. 59
Figure 21: representation of untimely transfer of message. .. 60
Figure 22: Untimely transfer of message (Delay) ... 60

Figure 23: representation of abnormal sequence of messages. .. 60
Figure 24: Representation of untimely transition between information states. The green dashed lines

represent the requested transitions. The red empty lines the realized transitions. ... 61
Figure 25: Representation of Impossible Transition between information states. . The green dashed lines

represent the requested transitions. The red empty lines the realized transitions. ... 61

Figure 26: Tree representation of failure cases .. 62
Figure 27 : General View on COTS with embedded SW. The lines represent flows that can failed, dashed

lines represent flows that shall not exist. The partitionning symbolized here can be spatial or temporal. ... 63
Figure 28: General positioning of COTS faults ... 66
Figure 29: GPIO undetermined band and corresponding logical level state diagram; 71

Figure 30: SPI bus basic principle ... 72
Figure 31: ARINC 429 topologies: star (on left side), bus-drop (on right side). .. 75
Figure 32: ARINC 429 encoding. .. 76
Figure 33: General ARINC 429 word structure. ... 76

Figure 34: MIL-STD-1553 Bus topology. ... 79
Figure 35: MIL-STD-1553 data encoding; .. 79
Figure 36: General MIL-STD-1553 word structure. ... 80
Figure 37: Sequence diagram of a typical message compound of 4 words in MIL-STD-1553. 81
Figure 38: Summary of MIL-STD-1553 failures states .. 84
Figure 39 : PCI Pin list from PCI Local Bus Specification [29] ... 86

file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827947
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827954
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827963
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827963
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827964
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827965
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827966
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827967
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827968
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827968
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827969
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827969
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827971
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827971
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373827973

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 8 Réf. CCC/13/001303 – rev. 05

Figure 40: Chronogram for a basic read operation, showing the state of the different signal involved. Signal

followed by“#” are active at low voltage level [29] .. 87
Figure 41: a typical PCI architecture with three connected devices of master type and an arbiter. Only main

lines have been represented. Bold line stand for multiple wires; R is REQ and G is GNT. 88
Figure 42: PCIe abstraction layers [32] [31] ... 92

Figure 43: Packet structure with the colour code of Figure 42 [31] .. 93
Figure 44: PCIe bus topology [32] .. 94
Figure 45: End-to-End transaction CRC.. 98
Figure 46: Link CRC ... 98
Figure 47: Frame retransmission principle .. 99

Figure 48: Adjacent device’s memory availability principle .. 99
Figure 49: Flow control management buffer overview. Here TLP stands for TL Packet, P for Posted, NP

for Non-Posted and CPL for Completion, the suffix H stands for Header and D for Data. [31] 100
Figure 50: Fictitious example of non-publicly documented common path: (1) Reference Manual

representation, (2) Under NDA representation. ... 101
Figure 51: Typical block diagram of a PCI-PCIe bridge [34]). ... 103

Figure 52: PCI and PCIe interfaces of the bridge. ... 104
Figure 53: Buffer management block structure. (Adapted from [34]) .. 105
Figure 54: A scenario for transaction loss in bridge; ... 106

Figure 55: A scenario for untimely transaction emission in bridge. Transaction Nr 6 is send with

undetermined data; ... 106

Figure 56: A variant scenario for untimely transaction emission in bridge. Transaction Nr 6 is send with

transaction Nr7 data; .. 106
Figure 57: Abnormal sequence due to selection of the wrong entry in buffers (transaction Nr2 will be sent

before Nr1). .. 107

Figure 58: untimely transition of information by direct corruption of data buffer. 107
Figure 59 : untimely transition of information by pointer non-synchronization. .. 107
Figure 60: An alternative scenario for transaction loss in bridge; ... 108

Figure 61: (Non) Detection of buffer management block errors. .. 109
Figure 62 : Clock structure of Bridge TSI384 (adapted from [34]). ... 113

Figure 63 : Bridge error handling principle (interpreted from [34]); .. 115
Figure 64 : Bridge PCIe error handling principle (interpreted from [34]); ... 115
Figure 65 : summary of error handling block possible failures; .. 116

Figure 66 : Bridge level reset feature summary; ... 118
Figure 67 : Context diagram of Reset Block; .. 119

Figure 68 : Reset state diagram of the bridge; ... 120
Figure 69: HOLT HI-3585/3586 block diagram; .. 123
Figure 70 : DD-00429 ASIC with external analogue adaptors block diagram; .. 124

Figure 71 : Generic block diagram of A429 driver; .. 124
Figure 72: DDC AceXtreme block diagram from [41]. .. 129
Figure 73: MIL-STD-1553 Driver Block diagram .. 130
Figure 74: Internal architecture of a DDRx SDRAM (from [42])... 134

Figure 75: Simplified architecture of DDR SDRAM .. 134
Figure 76 : DDR3 state diagram (from [42] and [43]). Principal zones have been highlighted. 136
Figure 77: Some possible failure of addressing operation. The incorrect valid address case is treated in

forthcoming paragraphs. .. 137
Figure 78: Data storage block substructure (from [42]). ... 139
Figure 79: Data transfer interface block substructure (from [42]). ... 141

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 9 Réf. CCC/13/001303 – rev. 05

Figure 80 : Structure of a NAND Flash component .. 144
Figure 81 : Memory card structure .. 144
Figure 82 : MPC8610 block diagram from [52]. ... 149
Figure 83: Simplified e600 block diagram focusing on instruction paths and memory type areas (clear grey

zones) – adapted from [53]; ... 150

Figure 84: MPX bus data and address tenure .. 153
Figure 85: MPX Coherency Module ... 154
Figure 86: DDR controller internal block diagram [52]. ... 156
Figure 87: DMA controller internal block diagram [52]. .. 160
Figure 88 : P4080 block diagram from P4080RM [33]. .. 165

Figure 89: Simplified e500MC block diagram focusing on instruction paths and memory type areas (clear

grey zones) – adapted from [59] .. 166

Figure 90: A possible view of an interconnect similar to CoreNet
 TM

 with three interfaces. This figure is

derived from [66]. .. 170
Figure 91: PAMU access right checking simplified process. .. 172
Figure 92: Address translation fault mechanism. .. 173

Figure 93: Simplified view of interruption mechanisms (see [33] and [63]). ... 176
Figure 94: General mitigation process. .. 182
Figure 95: The simplest black box test. ... 185

Figure 96: DMA transfer between DDR to PCIe (the DMA->DDR arrow symbolise the read request).... 187
Figure 97: Unexpected activation of a deactivated feature. .. 190

Figure 98: Basic fault injection : when input stimulus go from OK (green) to NOK (red), the output should

transit from Ok (green) to backup mode (orange) ... 191
Figure 99: Out of backup state: when input stimulus goes from NOK to Ok, the output should transit from

backup to Ok .. 192

Figure 100: Functional test under stress: the output signal should remain Ok and not transit to backup state.

 ... 192
Figure 101: Fault injection under stress: when input stimulus goes from OK to NOK, the output should

transit from Ok to backup mode .. 192
Figure 102: Out of backup state under stress: when input stimulus goes from NOk to Ok, the output should

transit from backup to Ok .. 193
Figure 103: Process for detection and mitigation definition ... 194
Figure 104: different levels of locality in comunications .. 196

Figure 105: COTS Output monitoring ... 201
Figure 106: Discrete I/O read back monitoring internal to COTS .. 202

Figure 107: External read back monitoring (a) and redundancy (b) for Discrete I/O 202
Figure 108: Principle of end-to-end protection (optional dating has not been represented). 209
Figure 109: Static view of an example of error detection / mitigation by an independent item on the data

path. ... 213

file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828035
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828036
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828042
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828042
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828043
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828043
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828044
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828044
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828045
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828045
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828046
file://TPSPFS01/PROJETS/ATA/DPT-SERV/SM-E/Projets%20en%20cours_TF/EASA_COTS-AEH/0_Customer/2013_12_xx_Livraison%20Rapport%20Final/CCC_13_001303_01_COTS-AEH_131202c.docx%23_Toc373828046

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 10 Réf. CCC/13/001303 – rev. 05

List of table

Table 1: COTS List. ... 37
Table 2: Classification of Bridges and Switches. .. 38
Table 3: correspondence between the current failure model and commonly used failures 62

Table 4 : classification of studied interfaces; .. 70
Table 5: Mapping of MIL-STD-1553 on OSI layers; .. 81
Table 6: PCI (inc. PCI-X improvment) and PCIe characteristics in GHz, MBps and Voltage [31]; 92
Table 7: list of input in order to analyse a bridge; ... 102
Table 8: A429 driver list of reference documents ... 122

Table 9: MIL-STD-1553 drivers, list of reference documents .. 128
Table 10: list of input in order to analyse a DDR memory; .. 133

Table 11: DDR3 Blocks I/O; ... 135
Table 12: list of input in order to analyse a NAND Flash memory; .. 143
Table 13: microcontroller list of reference documents .. 148
Table 14: Mechanisms implemented on the L1 cache of e600; .. 152

Table 15: Mechanisms implemented on the L2 cache of e600; .. 152
Table 16: Examples of Freescale multicores microcontrollers sorted by families (left column) and

documented with some of their features (right side); .. 162

Table 17: Multicore microcontroller list of reference documents ... 163
Table 18: An erratum example from [67]. ... 184

Table 19: summary of COTS internal detection/mitigation mechanisms; .. 198
Table 20: summary of detection/mitigation mechanisms on discrete output .. 203
Table 21: summary of detection mechanisms on SPI .. 203

Table 22: summary of detection mechanisms on ARINC 429 .. 204

Table 23: summary of detection mechanisms on MIL-STD-1553; ... 205
Table 24: summary of detection mechanisms on PCI; .. 206
Table 25: summary of detection mechanisms on PCIe; .. 207

Table 26: coverage of end-to-end protection ... 211
Table 27: coverage of detection / mitigation loop ... 214

Table 28: Address mapping of P5020 CCSR .. 234

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 11 Réf. CCC/13/001303 – rev. 05

Thales Disclaimer

In accordance with the provisions of the contract ref. EASA.2012.C15 entered into with the EASA for the

performance of the COTS-AEH study, some background intellectual property right shall remain Thales

Avionics’ property and can be reused without constraint by Thales Avionics.

Such Backgrounds are the following:

- Methods, techniques and associated results contained in the present report to the reference [31],

[69];

- methods, techniques and associated results about “Monitoring by an external independent item on

the data path” contained in section 9.3.4.4;

- methods, techniques and associated results about “Way to conduct functional and worse case tests”

contained in section 9.2.3.1;

- the concept and its illustration displayed in the Figure #96;

- methods, techniques and associated results about “Way to conduct endurance tests” contained in

section 9.2.3.2.

The other documents and publications provided as reference in this document shall remain the property of

their respective owners.

This disclaimer is in complement and prevails on the European Aviation Safety Agency disclaimer stated

above.

Thales Avionics SAS

18 Av Marechal Juin,

BP49

92362 Meudon-la-Forêt

FRANCE

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 12 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 13 Réf. CCC/13/001303 – rev. 05

Acknowledgements

There are a number of people without whom this report might not have been written and whom the authors

are greatly thankful.

Our first acknowledgments are dedicated to EASA. Mr Kleine-Beek has always been present for

management advices. Comments and technical discussions with Richard Canis and Stéphane Vaubourg

have considerably improved the report.

Within Thales many people contributed to this achievement. We would first like to thank on one hand the

initiators Marc Gatti, Patrice Toillon, Thierry Filloux and on the other hand Joël Bosson, Eric Parelon,

Cédric Chevrel and Marc Fumey for strategic discussions.

On the technical aspects the report benefited of the deep, synthetic and pedagogical understanding of

Patrick Dervin on digital electronics. Many of these pages could not have been written without him. Guy

Berthon was always available for meaningful comments and support. Christian Pitot introduced the

complementarity between tests and mitigations. Many pages on multicores come from passionate

discussions with Anthony Roger, Xavier Jean and Hicham Agrou. A large amount of knowledge from

Anthony is in particular present in the multicore state of the art. The PCIe chapters are based on the

knowledge of Aurélien Asséo who wrote the section on PCIe intrinsic failure mitigation mechanisms. The

MIL-STD-1553 chapters benefited from the knowledge of William Terroy. We thank Stéphane Bazin to

have brought to our attention very interesting references, David Faura for general discussions, Charles

Kremer and Jean-Philippe Borel for their support. We thank also Freescale represented by Mr Eric Bost

for many complementary explanations.

 The report set off many reactions and comments by our colleagues and we thank Philippe Juhasz, Tarik

Aegerter, Jean-Daniel Chauvet, and Sébastien Tricot for their help to robustify this document.

Finally our thoughts go toward our families for their patience during these busy months.

 Meudon-La-Forêt November, 22
nd

, 2013

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 14 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 15 Réf. CCC/13/001303 – rev. 05

Executive Summary

The intent of this report is to provide a global methodology to tackle design errors of COTS in airborne

safety critical usage of Design Assurance Level A.

The methodology is deployed in two major steps

1. Analysis of failure mode of the COTS both at black box and grey box level in order to list the

failure modes induced by potential design errors;

2. Definition of test in order to improve the qualitative confidence level on COTS blocks reliability

and definition of detection and mitigation mechanisms for the analysed failures.

Where Reliability is the ability to perform a function for a given duration in given conditions.

In order to achieve this goal the project has selected and analyses some Complex and Highly complex

COTS families.

Black box approach relies on COTS output failure modes and intrinsic detection / mitigation mechanisms.

Grey box approach relies on an intermediate model between black box and non-accessible white box level.

The grey box model is chosen in order to be free of property rights and heuristic. It allows detailing the

COTS block behaviours and failures and reaching a level of detail at which the possible causes of design

errors can be guessed.

The methodology tries also to limit its extension in abstraction to a logical level, avoiding the details of

physical level when possible and sorting these details when they are required. At this logical level the

method relies on a generic failure model with five families of failures that are mapped on each COTS type

of interfaces at black box level and on COTS block interfaces at grey box level.

In order to mitigate design errors conjectured in the first part of the work, test and detection/mitigation

mechanisms are proposed.

Tests (in particular randomized endurance tests) allow improving the confidence on the reliability of some

COTS blocks with respect to design errors.

The test function is

 To determine a domain of controllable determinism for COTS usage.

The detection and mitigation mechanisms have then two functions:

 To guarantee that the COTS remains in the domain of controllable determinism;

 To guarantee a controllable functioning in the defined controllable determinism domain;

Detection / Mitigations mechanisms are of three types:

 COTS internal detection and mitigation mechanisms;

 COTS detection mechanisms associated to architectural mitigation mechanisms;

 Architectural detection and mitigation mechanisms.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 16 Réf. CCC/13/001303 – rev. 05

All this mechanisms should be tested during development with fault injection type tests and monitored in

operation by Power-On Built-In-Test in order to prevent adverse effects of systematic or random faults on

their availability and correct functioning.

The discussion on a completion criterion on COTS study has been raised. The report does not intent to

conclude on this question.

The key points of the study outlined here before could nevertheless provide some hints to the system and

equipment development teams, safety engineers and certification authorities in order to work safely and

efficiently.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 17 Réf. CCC/13/001303 – rev. 05

1 Background

1.1 Concern

Usage of complex and highly complex Commercial-On-The-Shelf (COTS) components become more

and more predominant in airborne systems, in particular for systems supporting critical functions (i.e.

functions of Design Assurance Level (DAL) A or B see ED-79A / ARP4574A [1]). This is mainly due

to a need of a higher integration (SWaP: Size, Weight and Power) of avionics platforms, in conjunction

with the high evolution rate of the available supporting technologies on the market.

This trend has to be considered in association with an increase of the intrinsic complexity of these

components that have experienced a rapid evolution from different components architected by the item

/ system designer on a Printed Circuit Board (PCB) to a fully integrated chip, named System on Chip

(SoC), architected by the chip designer (thanks to the reduction of technology process size in

components).

A typical example of this evolution can be observed on Personal Computer type board as depicted on

Figure 1 that presents a model of progressive integration from a microprocessor to an integrated

microcontroller. In this evolution, the Points of Observation and Points of Control have disappeared for

testing or analysis purposes. Thus the control of the component features is more difficult to achieve.

Each Integration step (Is) leads to the disappearance of Observable points from the point of view of

system/item designer and increase the internal complexity of the COTS as it implements new electronic

functions.

 At initial Integration step (Is0) the microprocessor, modelled here by its Core
1
, communicates with

external devices distributed on the PCB. Every communication line is observable and controllable if

needed. The observable points were:

o Communication between the Core and the North bridge,

o Communication between the North bridge and the Memory,

o Communication between the North bridge and the South bridge,

o Inputs/Outputs (I/O) of the North and South bridges.

These Points of Observation allow control of the communication by a third party that could be another

microprocessor or one of the chips cited on Figure 1.

1 One of the latest examples of this standalone processing core is the Freescale MPC7448.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 18 Réf. CCC/13/001303 – rev. 05

Figure 1: Typical evolution from microprocessor (IS0) to microcontroller (IS2 & IS3).

 At the first Integration step (Is1) all the communications between the Core and the North Bridge are

internal and no more directly accessible to the system/item designer
2
.

 Another Integration step (Is2) incorporates the South Bridge in the microcontroller perimeter, removing

the observable point dedicated to the exchanges between the two bridges.

 Another Integration step (Is3) corresponds to the integration of Memory in the perimeter of the COTS.

This leads to disappearance of the observable point between the Core and the Memory. It can be noted

that some microcontrollers like TI-Hercule series embed directly Flash (up to 3MB) and RAM (up to

256kB) memory on the SoC.

In fact, this integration began in the 90
ies

with for instance the MC68HC11 from MOTOROLA. The

novelty is now the development of microcontrollers with large computation capacities and integrated

memories in particular different levels of Cache Memories that can be assimilated to internal memories.

2 An example of such generation of microcontroller is the Freescale MPC8610 with a prominent North bridge allowing
more I/O controlling.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 19 Réf. CCC/13/001303 – rev. 05

The lack of observation described here is not fully covered by the existing Guidelines such as ED-

12()/DO-178() [2] [3] and ED-80/DO-254 [4]. In one hand, as mentioned in EASA CM - SWCEH –

001 [5] the microprocessor (to be understood here as the Core) is considered covered by ED-12()/DO-

178() and then is out of scope of the report:

“The development assurance of microprocessors and of the core processing part of the

microcontrollers and of highly complex COTS microcontrollers (Core Processing Unit) will be based

on the application of ED-12B/DO-178B to the software they host, including testing of the software on

the target microprocessor/microcontroller /highly complex COTS microcontroller.” - EASA CM -

SWCEH – 001- [5].

In the other hand, ED-80/DO-254 [4] recommends for the COTS to obtain as many life cycle data as

possible in order to gain in certification credit.

From the short overview above, we can see that COTS devices now available on the market to meet

increased demand for increased functional characteristics and performance are moving towards the

Highly Complex (HC) territory. New approaches to safety assurance might then be necessary as

compared to detailed internal functional and dysfunctional analyses that were previously the preferred

routes to support demonstration of acceptable behaviour. Moreover, the internal design of COTS is

generally kept under proprietary rights by device manufacturers, hence precluding access to data

potentially useful to reach the level of details similar to the one if it were designed by the avionics

manufacturer. This is raising issues and concerns for avionics design where the concept of “intended

functional performance under all foreseeable conditions with no anomalous behaviour” is one of the

main guidelines. In addition, the production volumes in the aeronautics domain are limited compared to

those of other industries as telecommunication, consumer electronics and information technology or

automotive. This results in difficulties to find COTS suppliers ready to fully open their books.

1.2 Purpose of the Survey

Guidance have been provided via the EASA Certification Memorandum EASA CM - SWCEH – 001

[5] on the way to provide data and justifications for COTS. Section 9 of this EASA CM recommends

activities to be performed in order to guarantee an acceptable level of confidence. These activities are

as follows:

[1] Classification with respect to criticality (DAL) and complexity (SHE, CEH, HC),

[2] Device data from the COTS manufacturer (Data and Errata sheets, User’s Manual, etc.),

[3] Design data, possibly additional data from the COTS manufacturer, subject to agreement,

[4] Usage Domain for the intended usage (e.g.: Used/Unused functions, usage conditions, etc.).

[5] Definition, and V. & V. of the Usage Domain (UD), including for Determinism and Partitioning,

[6] Errata sheets Capture and Control, and [7] Errata sheets Assessment and mitigations),

[8] Past and Current Experience gained along with recommendations (Errata workarounds),

[9] Configuration Management, including device data change information and description,

[10] Additional Verifications based on Change Impact Analysis (CIA) when device is changed,

[11] Validation & Verification versus requirements at upper level of hardware integration,

[12] Failure Analysis (modes and rates), including for configured used/unused functions,

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 20 Réf. CCC/13/001303 – rev. 05

[13] Product Service Experience (identification, documentation and assessment versus DAL),

[14] Evidence of Stability and Maturity of the COTS device, errata rate, and modifications,

[15] Architecture Mitigation and Common Cause (and Mode) Analysis for critical DAL A failure

paths,

[16] Robust Partitioning (if used), and any other alternative methods (by design, tests, analyses).

When COTS contributes to Catastrophic event,

, with a classification DAL A, the detection/ mitigation

activities are recommended whatever this COTS is classified simple, complex or highly complex and

whatever the Product Service Experience (PSE) is classified sufficient or low.

Such detection / mitigation activities have already been applied in avionics safety related applications

even if the mitigation in place were principally to robustly deactivate some COTS feature. For instance,

in the past, microcontroller I/O complex features have been used for maintenance purposes in ground

life phases and as standalone micro-processors with simple I/O for in-flight safety related applications,

with strong internal limitation mechanism in order to avoid any triggering of microcontrollers full

features.

Another widely used, architectural mitigation is implemented by adding a control path – independent to

the functional path in which the COTS component is involved. Sometimes it may also be acceptable to

implement architectural mitigation through an independent means which could detect the COTS

component failure. This last type of architectural mitigation is based on the assumption that any sudden

internal failure of the COTS component can be identified when evaluating the output of the component

- this is known as fault symptom detection. A fault symptom is defined as the consequence of the

COTS internal failure (permanent or temporary) at the output of the component, e.g. frozen data, bits

swap, timing shifts.

The present report provides few directions and ideas in how to complement, substantiate and justify the

approaches already taken in the analyses of past and current designs involving Complex to Highly

Complex COTS Electronic Hardware, in terms of detection and mitigation of COTS failures.

1.3 Methodology Outline

The call for tender of the project
3
 proposes different tasks to be performed in order to complete the study.

These tasks cover three main topics:

 COTS internal model and faults,

 COTS output flows and failures,

 Output flow failures detection and COTS faults mitigation.

During the development of the project it has been considered, by the authors, that this initially proposed,

bottom-up methodology, was not sufficient to take into account the characteristics of COTS, in particular

in their complexity and their property right aspects.

By the way, the methodology followed in this report has two viewpoints:

1. A top down approach starting from output flow characterizations and failures that provides,

3 See “Specifications attached to the Invitation to Tender EASA.2012.OP.26 COTS-AEH — Use of complex COTS
(Commercial-Off-The-Shelf) in airborne electronic hardware –failure mode and mitigation”

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 21 Réf. CCC/13/001303 – rev. 05

o A list of possible failures modes of the COTS as seen from the outside,

o A list of available internal protections depending upon I/O technology,

o Some possible COTS internal faults that can causes these failures.

These failures constitute an invariant for further studies on future COTS.

2. A bottom-up study on some typical architectures of complex COTS that provides

o A list of possible faults of COTS internal blocks,

o A list of COTS intrinsic typical mitigation mechanisms,

o The effects of COTS internal faults on external failures (if any).

3. A proposal for detection means on the output flow and a corresponding mitigation of COTS faults.

1.4 Structure of the Report

This report is organized as follows. After this introductory chapter (Background), the aim and objectives

agreed at the start of the study is recalled, and the changes occurred during the project are outlined

(Chapter 2).

Then a complete glossary including acronym list and definitions is provided (chapter 3. Glossary). The two

following chapters give a state of the art from literature point of view (chapter 4. Literature Review) and

from technical point of view (chapter 5. state of the art).Afterward, the methodology followed is detailed

(Chapter 6. Methodology) and the technical work deployed.

In chapter 7-dedicated to the study of interface failure modes - the top-down part of the study is detailed on

the different output flow types, as they are partly independent of the COTS type. In this chapter, failure

mitigation mechanisms previewed on the interface are clearly separated from those integrated into COTS

(Chapter 8) and from mechanisms to be defined in order to mitigate COTS faults (chapter 9).

In chapter 8 each category of COTS is studied, with respect to their internal block faults. Due to the large

number of possible scenario that could lead to detection, mitigation, Chapter 9 proposes the writing and test

of a usage specification of the COTS that could cover many design errors. On the basis of chapters 7 and 8

detection and mitigation of remaining design failures can be conducted. This is detailed in chapter 9 before

an overview and result summary in conclusion (chapter 10).

A dedicated chapter is reserved for references. Some details have been grouped in Annexes in order to

avoid an overload of the report core.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 22 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 23 Réf. CCC/13/001303 – rev. 05

2 Aims and Objectives

This chapter is directly derived from the Specifications attached to Invitation to Tender EASA.2012.OP.26

and from EASA expectations expressed in the Terms Of Reference (TOR), as part of those specifications.

2.1 EASA Expectations

This research project is intended to investigate and identify under which conditions the assumption is

valid that any sudden internal failure of the COTS component can be identified when evaluating the

output of the component.

Therefore the objective of the study is to provide the Agency with sufficient data and analysis to be

able to write and publish guidance material on the subject of COTS components fault symptoms and

related generic detection means in safety-critical airborne systems. These systems would be of

Development Assurance Levels (DAL) A in compliance with CS 25.1309 (a) and (b), ED-79A /

ARP4574A, ED-80 / DO-254 and EASA Certification Memoranda (EASA CM-SWCEH–001 issue 01

Rev 01) for Airborne Electronic Hardware (AEH).

The scope of the study shall cover all kinds of complex and highly complex digital electronic hardware

COTS components used in airborne safety critical applications (DAL A)

2.2 Project objectives

COTS-AEH project objectives are:

 To identify the typical complex COTS used and that will be used in future designs;

 To identify complex COTS-AEH typical failure modes;

 To perform investigations on the possibility to perceive complex COTS- AEH failure modes;

 To identify architecture detection/ mitigation means for complex COTS- AEH failure modes;

 To suggest recommendations for detection/ mitigation of complex COTS- AEH failures;

 To suggest recommendations and good practices;

 And to suggest complementary or amendments to EASA guidance.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 24 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 25 Réf. CCC/13/001303 – rev. 05

3 Glossary

3.1 ACRONYMS

AEH Airborne Electronic Hardware

BER Bit Error Rate

CAT CATastrophic

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CS Chip Select

DAL Development Assurance Level

DDR Double Data Rate

DLL Data Link Layer

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

EASA European Aviation Safety Agency

ECC Error Correcting Code

EEPROM Electrically-Erasable Programmable Read-Only Memory

FAA Federal Aviation Administration

FSB Front Side Bus

GPIO General Purpose Input Output

Gbps Giga bits per second

GBps Giga Bytes per second

I/O Input(s) / Output(s)

I²C Inter-Integrated Circuit

ICD Interface Control Document

IMA Integrated Modular Avionics

IOMMU Input Output Memory Management Unit

IP Intellectual Property

JEDEC Joint Electron Devices Engineering Council

LRU Line Replaceable Unit

Kb Kilo bit

KB Kilo Byte

MB Mega Byte

MBps Mega Byte per second

MBU Multiple Bit Upset

MCU Micro Controller Unit

MMU Memory Management Unit

MPIC Multicore Programmable Interrupt Controller

NDA Non-Disclosure Agreement

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PIC Programmable Interrupt Controller

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 26 Réf. CCC/13/001303 – rev. 05

PLD Programmable Logical Device

PLL Phase-Locked Loop

PoC Point of Control

PoO Point of Observation

RAM Random Access Memory

SDRAM Synchronous Dynamic Random-Access Memory

SEU Single Event Upset

SoC System On Chip

SPI Serial Peripheral Interface

SRIO Serial Rapid IO

TL Transaction Layer

TLP Transaction Layer Packet

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver Transmitter

3.2 KEY DEFINITIONS

3.2.1 Definitions relatives to hardware items classification

Commercial Off-The-Shelf (COTS) Component –

Component, integrated circuit, or subsystem developed by a supplier for multiple customers, whose design

and configuration is controlled by the supplier’s or an industry specification.

ED-80/DO-254 – Appendix C – Glossary of terms [4]

Complex hardware item

A hardware item is identified as simple only if a comprehensive combination of deterministic tests and

analyses appropriate to the design assurance level can ensure correct functional performance under all

foreseeable operating conditions with no anomalous behaviour. When an item cannot be classified as

simple, it should be classified as complex.

ED-80/DO-254 §1.6 [4]

Complex COTS Microcontroller –

Any electronic item, which executes software in a specific core area and implements complex peripheral

hardware elements such as I/O bus controller,

EASA CM – SWCEH – 001 [5]

Highly Complex COTS microcontroller

A microcontroller should be classified as Highly Complex as soon as it has any of the following

characteristics:

 More than one Central Processing Unit (CPU) are embedded and they use the same bus (which is not

strictly separated or which uses the same single port memory);

 Several controllers of complex peripherals are dependent on each other and exchange data;

 Several internal buses are integrated and are used in a dynamic way (for example, a dynamic bus switch

matrix).

EASA CM – SWCEH – 001 [5]

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 27 Réf. CCC/13/001303 – rev. 05

Simple COTS Microcontroller –

Any electronic item, which executes software in a specific core area and implements simple peripheral

hardware elements such as UART, A/D, D/A

EASA CM – SWCEH – 001 [5]

System on Chip (SoC) –

A System on Chip embeds in a single chip all the heterogeneous hardware functions necessary for a

complete system. SoCs are usually made up of processor cores and other functions such as interface

controllers, internal bus controllers, co-processors, on-chip memory, data converters…

The SoC components can be split into 2 main categories:

• The microprocessor based SoC

• The custom SoC (PLD/ASIC)

From Faubladier, F.; Rambaud, D 2008 [6],

3.2.2 Definitions relative to Board and COTS Architectures

Address (in this report)

Part of informational content of a message necessary to its transmission
4

Architecture (in this report)

Identification of a system's or an item’s physical components and their interrelationships. For the particular

purpose of this document, system or item has to be understood as the COTS and its direct peripherals

within the computer.

Black Box
 A device, system or object which can be viewed in terms of its input, output and transfer characteristics

without any knowledge of its internal workings

(Wikipedia)

Cache

High-speed memory containing recently accessed data or instructions,

Control (in this report)

Part of informational content of a message necessary to its processing but is neither data nor destination

address – see footnote
4
 for an example -

4 Consider the analogy with a letter;

- The envelope and its content constitute a message;

- This letter carry information in particular through the text written on the inserted paper but also, the

address of the receiver, the address of the sender as it is written on the back side of the envelope or on

the inside paper, the post-stamp identifying the sender post office and the sending date, …

- These information can be extracted of the analysis of

o Payload included in the envelope (the letter);

o Address on the envelope;

o Encoded Controls on the envelope (stamp, post stamp).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 28 Réf. CCC/13/001303 – rev. 05

Data (in this report)

Encoded syntactic content of the totality or of a part of a message
5
; (for instance in communication buses

where data are separated from control and addresses)

Grey Box (in this report)

Black box refined breakdown level, built with fragmentary, non-contractual and potentially under NDA

information

Information (in this report)
6

Semantic content of a message through payload, addresses or controls – see footnote
4
 for an example –

Intellectual Property (IP): In electronic devices, an Intellectual Property (IP) or Intellectual

Property core (IP core) is an electronic function designed to be reused as a portion of a device (COTS,

ASIC or PLD). [6]

Message (in this report)

A continuous block of data
7
 with a defined length which is transported by the system (either by a

communication network or within a module), -DO-297 [7]– see footnote
4
 for an example -

North Bridge

The Northbridge has historically been one of the two chips in the core logic chipset on a PC motherboard.

Dedicated to higher capabilities of the motherboard, it has increasingly migrated to the CPU chip itself. [8]

Payload (in this report)

Part of information carried by a message and related to end-user need – see footnote
4
 for an example -.

South Bridge

The Southbridge is one of the two chips in the core logic chipset on a personal computer (PC)

motherboard. The Southbridge typically implements the slower capabilities of the motherboard. [8]

Point of Control (PoC)
Physical location or connection accessible for injection of test signals or data;

Point of Observation (PoO)
Physical location or electrical connection accessible for measurement or logging of signals or data in

reaction to injection of test signals or data at PoC

5
 Although we tried to give the most general definition of data, it can have different extents depending on

the context, in order to cope with the various domains covered. For instance in communication buses

context data is separated from the addresses and controls and represent the payload with possible particular

controls (like those embedded on a letter), in memory context, address may be included in the range of

data…

6 This definition is freely adapted from Shannon, 1948 [72]. Contrary to Shannon, emphasis is placed here on
semantic and not syntax.
7 To be fully coherent with data definition, this definition should contain “data", "address" and "control”.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 29 Réf. CCC/13/001303 – rev. 05

3.2.3 Definitions relative to risk analysis

Failure
The inability of a system or system component to perform a required function within specified limits;

A failure may be produced when a fault is encountered.

ED-80/DO-254 [4]

Failure Mode:

The way in which the failure of an item occurs

ED-80/DO-254 [4]

Fault:

(1) A manifestation of a flaw in hardware due to an error or random event. A fault, if it occurs,
may cause a failure. (2) An undesired anomaly in an item.
ED-80/DO-254 [4]

Error:

A mistake in requirements, design or implementation
ED-80/DO-254 [4]

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 30 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 31 Réf. CCC/13/001303 – rev. 05

4 Literature Review

4.1 Safety related avionic standards & guidelines

 ED-79A/ARP-4754A: Guidelines for Development of Civil Aircraft and Systems

European Organisation for Civil Aviation Equipment (EuroCAE) & Society of Automotive

Engineers (SAE), 2010. [1]

This guideline addresses problematic that deal with complex embedded systems, included but not

restricted to digital avionics systems. The definition of system in ED-79A/ARP-4754A is very wide

and thus it can be applied to COTS.

 ED12()/DO-178()
8
: Software consideration in airborne systems and equipment certification. [2] [3]

Although dedicated to software, this standard is referenced in EASA CM - SWCEH – 001 to reach

development assurance for processors.

 ED-80/DO-254: Design Assurance Guidance for Airborne Electronic Hardware. [4]

EURopean Organisation for Civil Aviation Equipment (EUROCAE and Radio Technical Commission

for Aeronautics (RTCA).

This standard deals with design quality for hardware elements. It explicitly addresses the COTS

problematic.

 EASA CM - SWCEH – 001 Iss. 1 Rev. 1: Development Assurance of Airborne Electronic Hardware,

9th Mar. 2012
9
. [5]

This certification memorandum has been developed by EASA to highlight issues that shall be

addressed in the certification process. It explicitly addresses the use of COTS for DAL A, B and C

applications and considered the use of architectural mitigation:

8 In this document reference to ED12()/DO-178(), with empty parenthesis, corresponds to both versions B and

C of the standard.
9 EASA CM - SWCEH – 001 Iss. 1 Rev. 1 can be download on the EASA web site :
http://easa.europa.eu/certification/docs/certification-memorandum/EASA CM-SWCEH-001 Issue 01 Rev 01 Development
Assurance of Airborne Electronic Hardware.pdf

http://easa.europa.eu/certification/docs/certification-memorandum/EASA%20CM-SWCEH-001%20Issue%2001%20Rev%2001%20Development%20Assurance%20of%20Airborne%20Electronic%20Hardware.pdf
http://easa.europa.eu/certification/docs/certification-memorandum/EASA%20CM-SWCEH-001%20Issue%2001%20Rev%2001%20Development%20Assurance%20of%20Airborne%20Electronic%20Hardware.pdf

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 32 Réf. CCC/13/001303 – rev. 05

9.3.8. Architectural mitigation

Results of the common mode analysis should be taken into account in order to show whether:

[15]: Architectural mitigation should be implemented in any case in which one or more instances of the

COTS component could cause a Catastrophic failure effect without any other contributing faults occurring.

The results of Common Cause Analysis performed by the applicant should be taken into account. For

example, the anomalous behaviour or failure of identical COTS components (common design),

implemented in redundant system architecture, should not lead to a Catastrophic failure condition.

Also the Common Cause Analysis performed at Aircraft level may reveal some Hazardous engine/propeller

Failure Conditions that lead to a Catastrophic Aircraft Failure Condition. In such a case, this topic [15]

should be addressed.

4.2 Others industrial sectors standard

ISO-26262, 2011 “Road vehicles — Functional safety” [9]

 Part 4: Product development: system level

 Part 5: Product development: hardware level

 Part 10: Guideline on ISO 26262

The automotive standard for functional safety introduces to particular concepts of interest for complex

COTS architecture detection/ mitigation means. Firstly, it introduces the notion of safety context and in

particular technical safety concept (ISO 26262 Part 4).

Technical Safety Concept

Specification of the technical safety requirements and their allocation to system elements for

implementation by the system design;

The technical safety concept is a way to identify and specify the derived requirements associated to

safety mechanisms in a safety-oriented design.

Secondly, this standard in its part 5 – Annex D (completed in the particular case of microcontrollers by

part 10 Annex A) details the failure modes of the constitutive part of a COTS and the order of

magnitude accessible for typical detection covering rates.

4.3 Studies on COTS–AEH usage in Avionics

 COTS CPU Selection Guidelines for Safety-Critical Applications by Forsberg, H. & Karlsson, K.

[10];

Although it is quite old, this conference paper propose architectural detection/ mitigation in the case of

COTS microprocessors avionics usage.

 Handbook For The Selection And Evaluation Of Microprocessors For Airborne Systems by

Green, B. et al [11]

(http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR_11_2.pdf)

This Handbook synthetize the results of a large study conducted for FAA between 2005 and 2011

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR_11_2.pdf

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 33 Réf. CCC/13/001303 – rev. 05

by a team conducted by Pr. R. Mahapatra from Austin University on Microprocessors for avionics

usages. These study led to several reports in 2006 [12], 2008 [13] [14], 2010 [15] and 2011 [16].

Starting from simple standalone microprocessors like Freescale PowerPC 7447, on which

exhaustive models can be performed, authors identify the increasing difficulty to conduct such

approach for complex microcontrollers like MPC8540 and finally favour Safety Net based

approaches. Report and Handbook identify failure modes of microcontrollers and some detection/

mitigation techniques that can be applied.

 SoC Survey Report - Safety Implications of the use of system-on-chip (SoC) on commercial of-the-

shelf (COTS) devices in airborne critical applications by Faubladier, F. & Rambaud, D on EASA –

Research Project EASA.2008./1, 2008
10

 [6]

This EASA project report assesses the safety implication of using SoC in safety critical applications. It

proposes amending recommendations for hardware certification process.

 The Use of Multicore processors in Airborne Systems by Jean, X., Gatti, M., Berthon, G., Fumey, M.

for Research Project EASA EASA.2011.6, 2011
11

 [17] offers a complete panorama of multicore

possible usage in avionics with recommendation to use them safely.

10 EASA – Research Project report EASA.2008/1 can be downloaded on the EASA web site:

http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/Final_Report_EASA.2008_1.pdf.
11 EASA – Research Project report EASA.2011/6 can be download on the EASA web site :

http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/CCC_12_006898-REV07 -
MULCORS Final Report.pdf

http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/Final_Report_EASA.2008_1.pdf
http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/CCC_12_006898-REV07%20-%20MULCORS%20Final
http://www.easa.europa.eu/safety-and-research/research-projects/docs/large-aeroplanes/CCC_12_006898-REV07%20-%20MULCORS%20Final

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 34 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 35 Réf. CCC/13/001303 – rev. 05

5 STATE OF THE ART

5.1 GENERIC EMBEDDED COMPUTING ARCHITECTURE

The present chapter aims at presenting the State of the Art on technologies of COTS handled in this report.

Figure 2 presents a typical state-of-the-art computing architecture that identifies in their context, potential

COTS candidates for assessment in the present study. Depending upon the kind of computing platform

concerned Figure 2 can represent either a part of an electronic board, an electronic board or a complete

computer.

Figure 2: Typical Computer architecture.

Figure 2 shows in their environment the following elements that are described in section 5.3:

 A Microcontroller, which is in this particular case a multicore microcontroller.

 Microcontroller are described in section 5.3.2,

 Multicore microcontrollers in section 5.3.4.2.

 Different types of memories:

 DDRx for data and program (see section 5.3.2);

 Flash memories for program (see section 5.3.3.2);

 NVM memories such as EEPROM, that are out of the scope of this report as they

are considered as Simple COTS;

 A power supply with some SoC

 Analysis has to be done to consider this programmable device as simple or

complex depending on the numbers of Elementary Power Supply it can manage

and control.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 36 Réf. CCC/13/001303 – rev. 05

 Some line interfaces (I/O, Ethernet, …) that are in general realized by a microcontroller or a

PLD;

 A switch PCIe (see section 5.3.1);

 A bridge (see section 5.3.1);

 PMC (PCI Mezzanine Card) or XMC (Switched Mezzanine Card). These cards are in general

COTS cards and are out of scope of the report.

5.2 COTS SELECTION

Considering the COTS devices involved in AEH generic embedded architecture, the present subchapter list

the complex and highly complex COTS that are retained for the analysis. For each of them the character

complex or highly complex is stated based on EASA CM - SWCEH – 001 [5]. A classification of complex

COTS can be found in [6]:

• Microprocessors,

• Microcontrollers,

• Controller / Transceiver / Bridges / Switches,

• Graphic Processor (out of the scope of the study),

• Programmable Logical Device (PLD) and ASIC are not considered as COTS that are fully covered by

the ED-80/DO-254.

The remaining COTS under study are:

COTS Considered
Examples

Status Rational

Bridges PCI/PCIe bridge Complex COTS Bridges contain wired logic

configured by registers not

exhaustively described in the

available datasheets.

Particular
interface drivers

ARINC 429 drivers

MIL STD 1553 drivers

Complex Except for some trivial cases (A429

single line transmitter or receiver

used in a “word by word” protocol)

that can be said simple, those

communication interfaces have to

deal with asynchronism and DMA

access to shared resource leading to

some complexity (In the past those

functions are handled by ASICs or

PLD instead of COTS)

DDR3 memories Generic model Complex

Hardware item

DDR3 memories cannot be

considered as complex due to their

constitution but due to the non

observability of the cluster memory-

memory controller.

NAND Flash
Memories

Generic Model Complex

Hardware item

NAND flash memories need

firmware in order to manage wear,

and complexity status is inherited

from this lack of determinism to

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 37 Réf. CCC/13/001303 – rev. 05

COTS Considered
Examples

Status Rational

manage.

Complex Micro
Controllers12

Freescale

MPC8610

& generic model

Highly Complex

Micro-

Controllers

Microcontrollers implement complex

peripherals such as PCI, PCIe,

Ethernet, …

Multicore Micro
controllers

Freescale

P4080 with extension to

other Freescale

families.

Highly Complex

Micro-

Controllers

Multicore microcontrollers are

considered as highly complex even if

they would not implement complex

peripherals.

Table 1: COTS List.

5.3 STATE OF THE ART OF EMBEDDED COTS

5.3.1 Bridges and switches

The terminologies bridges and switches often cover similar concepts of a device connecting two or more

buses or networks
13

 areas.

Three characteristics can be raised in order to separate both concepts.

(a) Technology homogeneity: In some application it appears that bridge applies to devices interfacing

heterogeneous technologies (e.g. PCI to PCIe) and switches to devices interfacing homogeneous

technologies (e.g. Ethernet).

(b) Parallel versus serial: Distinction between these two terms can be done also on the parallel / serial

nature of the interfaced buses or networks. In this case bridges are dedicated to parallel buses and

switches to serial ones.

(c) A third operational way to differentiate bridges and switches is to consider that:

 A bridge functionally connects two buses or networks that define two different worlds from

technology (e.g. a PCI bus and a PCIe bus) or addresses point of views.

 A switch connecting n buses or networks of the same nature but add to the bridging function a

switching function between the different connected buses or networks.

These three ways have advantages depending upon the point of view.

The criteria presented in former paragraphs can be summarizes in a table. For instance Table 2 presents

examples of bridges and switches, considering combination of Technology homogeneity on both sides with

the number of buses or networks connected on one side and the parallel or serial character on the other

side.

12 Not all Microcontrollers are qualified as complex. We consider here only complex microcontrollers
13 The wording bus is reserved for communication media that address directly memory zones. Network is reserved
for communication media that address apparatus that therefore manage their own memory addresses.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 38 Réf. CCC/13/001303 – rev. 05

 homogeneous

1 to 1
homogeneous
1 to n

heterogeneous
1 to 1

heterogeneous
1 to n

parallel to parallel bridge PCI-PCI no example bridge PCI-local
bus

no example

parallel to serial Not applicable Not applicable bridge PCI-PCIe no example

serial to serial no example
useless

switch PCIe
switch Ethernet

Ethernet controller
with PCIe interface
(cannot be
considered as a
bridge nor a
switch)

no example

Table 2: Classification of Bridges and Switches.

Note that in the context of OSI model [18] Bridges and Switches operate up to Level 2 (Data Link Layer)

5.3.1.1 Bridges

It exists two main categories of bridges:

- Homogeneous bridges linking two buses or networks of same nature. These bridges –consider for

instance a PCI-PCI bridge on a PC motherboard – connect two address zones one on the motherboard

and a second on a connected card (see for instance the example on Figure 3. If bus address map is

common to both sides of the bridge (no overlapping

address ranges), the bridge is said transparent. This is in

general the case in avionics application in which the

complete network is settled before bridge configuration.

Here, the bridge does not operate address translation. In

the PC example presented before the two memory

zones have possible overlapping address, in this case

the bridge is said non-transparent and in order to

connect this two overlapping address zones, it has to

ensure learning of connected device addresses and

address translation.

- Hybrid bridges that connect in the same manner two

buses of different nature for instance a PCI-PCIe

bridge. In this case, in addition to the function ensured

by the homogeneous bridge that remain, the bridge has

a function of signal conversion that can become itself

complex as in the case of translation between parallel

PCI bus and a serial PCIe bus.

Such a bridge is studied in section 8.2.

Figure 3: example of PCI sub-network
architecture through PCI-PCI Bridges.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 39 Réf. CCC/13/001303 – rev. 05

5.3.1.2 Switches

In Table 2 it appears that switches are encountered in serial homogeneous 1 to n applications (e.g. Ethernet

and PCIe). In these application switches allows interconnecting several buses or networks by dynamically

switching of digital frame defined by a communication protocol.

Figure 4: schematic view of a switch

Figure 4 presents a simplified view of a switch with bridges to connect the external buses or network to the

internal communication bus that dispatch frames with respect to their addresses.

The major safety related application of switches in avionics is A664 (see Figure 5). In this domain the state

of the art is non-COTS switches so that switches is not tackled here.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 40 Réf. CCC/13/001303 – rev. 05

Figure 5: A switch in an A664 network.

5.3.2 Avionics Specific interface drivers

This type of component provides on one side connection to one low bandwidth normalized network type,

on the other side connection to a processing core local bus either parallel or serial.

It can be seen as the low end type of the bridge family.

On the normalized network connection side, the component can provide down to the Physical Layer,

including the analogue layers requested to adapt in reception and/or in transmission the external

communication media.

On the processing core side, a large panel of local buses are available going from SPI bus solution up to

PCI solution, while providing adaptability to microprocessor low end parallel local buses.

Amongst these avionics interface drivers avionics rely particularly on ARINC 429 and MIL-STD-1553

described hereafter.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 41 Réf. CCC/13/001303 – rev. 05

5.3.2.1 ARINC 429 interface drivers

ARINC 429 standard, firstly released in 1978, has been in service since early 80’s for communication

amongst avionics equipment and systems.

It is the most commonly used bus on commercial aircraft: Airbus A310, A320, A330, A340, Boeing B727,

B737, B747, B757, B767, McDonnell Douglas MD11, etc.; and helicopters.

A429 have been for tens of years a typical domain for dedicated ASIC/PLD designs that were the most cost

effective solution to implement such specific interfaces leading to a wide diversity of implementations.

Since few years, even if it is used uniquely in avionics context, COTS have been designed to integrate in a

single component several services related to this communication standard.

A short description of ARINC 429 standard is proposed in subchapter 7.4. As the COTS studied are

dedicated to the A429 decoding / encoding, the failure mode analyses are grouped in the COTS analysis

chapter and in particular in subchapter 8.2.4.

5.3.2.2 MIL-STD-1553 Interface drivers

MIL-STD-1553 transmission standard was one of the first communication standard introduced in avionics

in replacement of analogic communications. First released in 1973 the original standard, exclusively used

in military applications (e.g. USAF F16), has been superseded in 1978 by version B (Notice 4 of version B

has been released in 1996 [19]). It has been recently implemented on civil aircraft (A350) [20].

Beginning with COTS boards in the 80’s, MIL-STD-1553 transceiver are since 2000’s fully integrated

COTS components.

Due to the MIL STD 1553B bandwidth (1Mbit/s) and the two redundant interfaced busses proposed on

COTS components, either a parallel local bus or a PCI bus are commonly selected for processing core

connection to cope with several megabit per second bandwidth. The latest generation of MIL STD 1553B

COTS component also proposes core processing coupling through PCIe (see for example the DDC PCI-

Express AceXtreme [21]).

The issue for the COTS manufacturer is more a small process size issue (see for instance Figure 6), with

the need to provide a transformer insulation on the normalized network side and to mix in the same device

analogue (differential, after transformer insulation) and digital (3.3V to 5V range) parts.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 42 Réf. CCC/13/001303 – rev. 05

Figure 6: DDC MIL-STD-1553 driver evolution (from http://www.ddc-web.com/Images/New/Evolution.jpg).

5.3.3 Memories

5.3.3.1 DDR and QDR SDRAM

Memory chips have remained since many years the bottleneck in digital electronic performance. Moreover,

if transition from SRAM (Static Random Access Memory) to DRAM (Dynamic Random-Access Memory)

in 70’s showed a strong gain from economic and sizing point of views, allowing creation of large size

memories and the development of computers, it has in the same time featured a loss in bandwidth

performance and an increase in energy consumption
14

.

Starting from these considerations, great progresses have been achieved in order to overcome the DRAM

problems and in particular to increase their bandwidth
15

 and to some extent reduce electrical power

consumption. This led to a large variety of memory devices available today (e.g. DDRx, QDR, etc.). The

Double Data Rate (DDR) Synchronous Dynamic Random-Access Memories (SDRAM) came along this

way and are now the workhorses of the memory world.

Like classic SDRAM, DDR SDRAM is synchronous with the system clock. The big difference between

these two memory technologies is that DDR reads data on both the rising and falling edges of the clock

signal.

14 Energy consumption and lack of bandwidth of DRAM is in large part due to the necessity to supply in energy in
order to sustain the stored data and to refresh them periodically.
15 Indeed for a long time the development axis of informatics has been the research of computational performances.

http://www.ddc-web.com/Images/New/Evolution.jpg

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 43 Réf. CCC/13/001303 – rev. 05

When SDRAM only carries information on the rising edge of a signal, DDR module transfers data twice as

fast.

DDR memories evolved from DDR2 to DDR3 and now DDR4. These different types distinguished by the

depth of their prefetch buffers:

 DDR : 2 bits,

 DDR2 : 4 bits,

 DDR3 : 8 bits for higher bandwidth

I/O of these DDRx evolved too so that the voltage necessary for information transfer reduces from version

to version allowing higher performances for lower power consumption.

In this context memory integrity relies on embedded memory controller. Memory transfer protocols are

more and more complex and often request a dedicated memory controller (Figure 7). The observability of

exchanges between the core and the memory is lost.

Figure 7: Memory access evolution between SRAM (no controller) and DDR SDRAM (complex controller).

Note: even in the cases where the memory stays outside of the microcontroller chip, the increase of

memory frequency and the related signal integrity issues allow neither observability nor monitoring of

the memory bus.

Due to differences amongst versions of DDRx, interface between microcontrollers and DDR memories

evolves without full backward compatibility16. Latest microcontrollers as for instance Intel core i7 and

Freescale QorIQ TM devices are only interfaced with DDR3.

A single read or write access for the DDR SDRAM consists of:

16 Difference in On die Termination on the board are another reason why different type of DDRx are incompatible
each other. This point is out of the scope of the present report.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 44 Réf. CCC/13/001303 – rev. 05

 Single 2n-bit wide data, in one clock cycle is transferred at the internal DRAM core.

 Two corresponding n-bit wide data, in two-half clock cycle, are transferred at the I/O pins.

Figure 8 presents the detailed chronogram of a read action in a DDR technology. The clock (CK) is

complemented by a clock (CK#) mirror of the first one. When command and address are transferred

following CK, Data are transferred following CK and CK# so that with respect to CK there are transferred

on both edges of the signal (double data rate).

Figure 8: Transfer of data on both edges of clock signal in a DDR (source [22])

A simplified DDR / DDR2 architecture is given on following Figure 9. A more complete view details it on

Figure 74. This architecture is not sufficient by itself to justify this chip to be complex. The main factor

causing this classification is the quasi impossibility to observe the exchange between microcontroller and

memory, due to high bandwidth and low applied voltage. Consequently, DDR memories can be considered

from logical point of view as embedded in the microcontroller.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 45 Réf. CCC/13/001303 – rev. 05

Figure 9: Simplified view of DDRx architecture.

QDR (Quad Data Rate™) SRAMs are a family of SRAMs developed in 1999 by the QDR consortium for

High Performance Networking Applications. It is characterized by separate Inputs and Outputs that each

operates at Double Data Rates.

Like Double Data-Rate (DDR) SDRAM, QDR SRAM transfers data on both rising and falling edges of the

clock signal. QDR SRAM uses two clocks, one for read data and one for write data and has separate read

and write data buses (also known as Separate I/O), whereas DDR SRAM uses a single clock and has a

single common data bus used for both reads and writes (also known as Common I/O). QDR SRAM is not

2x faster than DDR SRAM but is 100% efficient when reads and writes are interleaved. In contrast, DDR

SRAM is most efficient when only one request type is continually repeated, e.g. only read cycles.

Note: most SRAM manufacturers constructed QDR and DDR SRAM using the same physical silicon,

differentiated by a post-manufacturing selection (e.g. blowing a fuse on chip).

As QDR and DDR SRAMs use same I/O technologies, the status about observability and monitoring is the

same.

5.3.3.2 Flash Memories

Flash memories, in general, are an electronic non-volatile storage device appeared in the eve of 80’s in

Toshiba. It is based on the integration of transistors (floating gate transistors) [23] allowing a memory cell

reduction per bit stored of 30%. It can be electrically erased and reprogrammed.

Flash memory now costs far less than byte-programmable EEPROM and has become the dominant

memory type wherever a significant amount of non-volatile, solid state storage is needed. In the consumer

market it is in particular associated with the development of CCD (Coupled Charge Device) Cameras,

making obsolete the use (for these applications) of EEPROMs or battery-powered static RAM.

There are two main types of flash memory, which are named after the NAND and NOR logic gates. The

internal characteristics of the individual flash memory cells exhibit characteristics similar to those of the

corresponding gates (see Figure 10).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 46 Réf. CCC/13/001303 – rev. 05

NAND type flash memory may be written and read in blocks

(or pages), which process size is generally much smaller than

the entire device. The NOR type allows a single word to be

written or read independently.

While non-flash EEPROM is erasable in small blocks,

typically bytes, flash memory erasing is performed at large

size blocks level (commonly named sectors). Flash memories

do not offer arbitrary random-access erase operations.

In addition to being non-volatile, flash memory offers fast

read access times. Although not as fast as static RAM. It is

why the resident application software on high end processor

is transferred at power up from the flash memory to the static

RAM map for execution.

The NAND type is primarily used in memory cards, USB flash drives, solid-state drives, and similar

products, for general storage and transfer of data. NAND flash allow a denser layout and greater storage

capacity per chip than NOR flash. NAND flash is typically permitted to contain a certain number of faults.

Manufacturers try to maximize the amount of usable storage by shrinking the size of the transistor below

the size where they can be made reliably, to the size where further reductions would increase the number of

faults faster than it would increase the total storage available. NAND relies on ECC to compensate for bits

that may spontaneously fail during normal device operation.

Common flash devices such as USB flash drives and memory cards provide only a block-level interface, or

flash translation layer (FTL), which writes to a different cell each time to wear-level the device. Another

limitation is that flash memory has a finite number of program-erase cycles. Most commercially available

flash products are guaranteed to withstand around 100,000 Program/Erase cycles before the wear begins to

deteriorate the integrity of the storage.

This effect is partially offset in some chip firmware or file system drivers by counting the writes and

dynamically remapping blocks in order to spread write operations between sectors; this technique is called

wear levelling.

Another approach is to perform write verification and remapping to spare sectors in case of write failure, a

technique called Bad Block Management (BBM).

The method used to read NAND flash memory can cause nearby cells in the same memory block to change

over time (become programmed). This is known as read disturb. The threshold number of reads is generally

in the hundreds of thousands of reads between intervening erase operations. If reading continually from one

cell, that cell will not fail but rather one of the surrounding cells on a subsequent read. To avoid the read

disturb problem the flash controller will typically count the total number of reads to a block since the last

erase. When the count exceeds a target limit, the affected block is copied over to a new block, erased, and

then released to the block pool. The original block is as good as new after the erase. If the flash controller

does not intervene in time, however, a read disturb error will occur with possible data loss if the errors are

too numerous to be corrected by ECC.

Figure 10: NAND and NOR Flash from [80]

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 47 Réf. CCC/13/001303 – rev. 05

The NOR type, which allows true random access and therefore direct code execution, is used as a

replacement for the older EPROM. NOR flash, as is used for a BIOS ROM, is expected to be fault-free.

For these reasons, some systems use a combination of NOR and NAND memories, where a smaller NOR

memory is used as software ROM and a larger NAND memory is partitioned with a file system for use as a

non-volatile data storage area.

Because of the particular characteristics of flash memories, it should be used with both, a controller to

perform wear levelling and error correction, and specifically designed flash file systems, which spreads

writes over the media and deal with the long erase times of NOR flash blocks. The basic concept behind

flash file systems is the following: when the flash store is to be updated, the file system writes a new copy

of the changed data to a fresh block, remap the file pointers, and then erase the old block later when it has

time.

5.3.4 Microcontrollers

5.3.4.1 Single core

A Microcontroller is a highly integrated component containing on the same die: a single processing core,

internal memory and programmable I/O peripherals interfaces and controllers.

Evolution of micro controllers has been outlined in section 1. Some examples of this evolution are

 The Freescale MPC7448, Intel Pentium II and IBM S/390 which are latest standalone processing core

examples.

Figure 11: a typical board architecture around a MPC 4748.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 48 Réf. CCC/13/001303 – rev. 05

 Note: Reference [6] considered microprocessors as standalone complex COTS. EASA CM - SWCEH –

001 [5] recommended that “The development assurance of microprocessors and of the core processing

part of the microcontrollers and of highly complex COTS microcontrollers (Core Processing Unit) will

be based on the application of ED-12B/DO-178B [2] to the software they host, including testing of the

software on the target Microprocessor / Microcontroller / Highly Complex COTS microcontroller.

 Simple Microcontrollers, that implement around a core simple peripherals, like UART, I²C, SPI.

Examples are Freescale MPC5567, Texas Instrument C2000 Microcontroller series or the older NXP

LPC2119;

 Integrated microcontroller with complex peripheral implementation and integrated memory controller

like Texas Instrument DSP or Freescale MPC8610 (Figure 12).

Figure 12 : Internal Block diagram for the MPC8610.

The integration of memories unit (like Cache) to large microprocessor cores implies that large amount of

computation by the microprocessor are hidden to the surrounding system.

The representation of a microcontroller given on Figure 1 does not represent any longer the typical

architecture of a microcontroller.

A simplified representation of mono-core MCU architecture is given on Figure 13 (for example MPC 8610

or ARM AMBA family).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 49 Réf. CCC/13/001303 – rev. 05

Figure 13: typical MCU architecture with internal bus

On most recent architecture, in general inherited from multicore MCU architectures, an interconnection

module which generic name is “interconnect” distributes information to the different bridges - Figure 14.

On Freescale microcontrollers, for instance on P3, P4, P5 families and future T series, this interconnect is

named CoreNet
TM 17

, on ARM devices it is called CoreLink
TM

.

Figure 14: MCU architecture with Switch.

17 CoreNet

TM
,OCeaN

TM
 and PAMU

TM
are trademark of Freescale semiconductor. CoreLink

TM
 is a trademark of ARM.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 50 Réf. CCC/13/001303 – rev. 05

Although, this interconnect structure is largely kept confidential by MCU designers, reference manuals

analysis and tests show that it can be seen has a multi-switch module. Its structure is discussed in sub-

chapter 8.8.

5.3.4.2 Multicore Microcontrollers

Since the introduction of the first microprocessor, the Intel 4004, in 1971 and for decades, progresses in

microprocessor performance have been driven by lowering process size of chips, increasing the number of

implementable transistors per chip (See Figure 15) and subsequently increase clock frequency
18

.

Figure 15: Moore law (src. Wikipedia [8])

It was anticipated that Moore laws will slow-down around 2013-2018 due to quantum effects:

 sub-threshold leakage which flows between the source and the drain of the transistor and which

occurs before the transistor is on;

 gate leakage which flows through the thin gate oxide;

 Other leakages exist but are minor compared with both previous cases.

18 The increasing amount of transistors enabled to design deeper pipelines and improved the embedded oscillators,
which directly impacted the available clock frequencies on which the microprocessor can run steadily.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 51 Réf. CCC/13/001303 – rev. 05

For traditional manufacturing processes (2D planar technologies) such as the ones of TSMC, Global

Foundries and other chip manufacturers, when the technology is scaling down in Deep Sub Micronics

(DSM) process size domain, the quantum effects are increasing drastically. Nevertheless, new

manufacturing processes such as the 22nm 3D FinFet technology of Intel and other 3D technologies are

implemented to reduce or at least limit and better control these quantum effects for chip that reached 22nm

in the last generation of Intel i7 in 2012

In fact before the process size shrinking reached the limit value, estimated around 4 nm, it appears that

thermal dissipation is the first constraint directly linked to the clock frequency increasing of

microprocessors
19

.

Various ways were explored in order to overcome this limitation.

Before 2000s, the only criteria for the optimization were the performance and so all the technique /

architecture enhancements were performed at core level.

 Increasing cache level 2 size in order to improve hit ratios and reduce the performance losses due to

cache misses
20

;

 Pipelining;

 Increasing the use of Instruction Level Parallelism (ILP) – pipelining in order to deliver one result

per cycle after a latency time;

 Develop a full parallelism in instruction computing – Simultaneous Multi-Threading (SMT) – while

applying ILP on each parallel thread. This technique has been used in processors from IBM (Power

5 and 6) and Intel;

 And others techniques as superscalar, branch prediction, speculative execution.

But due to the fact that firstly no more optimization was possible or found at core level and secondly that

the power wall is reached (see note
19

) new solutions found at platform/SoC level have been embedding

several cores on a single die. This solution is a natural extension of SMT with less design complexity.

The first multicore on the market was the IBM Power 4 in 2001. The present variety of multicore

processors necessitates some classification.

19

 More precisely, the temperature increase of the chip is the visible effect of the increase of the power

consumption. The power consumption must be divided into two contributors: the static power and the

dynamic power. The static power is the leakage power. This power is increasing drastically in last SoC

architecture (Power wall) because the technology scaling down. The dynamic power is due to the activity

of the chip (proportional to Voltage² and to frequency) and is completely dependent upon the usage of the

SoC resources.
20

 Increasing cache level 1 that is integrated into the deeper levels of the microprocessor is not possible

without reduction of the clock frequency.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 52 Réf. CCC/13/001303 – rev. 05

Figure 16: IBM power 4 architecture.

Moreover, since the 2000s, mobile platforms (essentially smartphones and tablets) are key drivers for the

semiconductor industry and so a change of paradigm occurred where the optimization is not only seen from

the performance point of view but also from the power consumption aspect.

The recent evolution in this domain encountered two steps:

(1) First these architectures focused the optimizations at SoC level by duplication of simpler identical

cores on the same chip. The overall performance/power consumption ratio was consequently

improved.

(2) Last, on mobile platform, chips evolve in order to become again heterogeneous with various kind of

cores (such as ARM, Power, x86, etc.) and use of hardware accelerators in order to leverage the

specificity of each one. Of course new problems occur such as for instance the software model to

apply to those new architectures.

A first classification of current multicores can be driven by the homogeneous or heterogeneous nature of

their cores. The majority of multicores embed replicas of the same core like the Intel core Ix or the

Freescale QorIQ
 TM

 series like the P4080 based on 8 cores e500MC.

Some others have different cores with (e.g. the Sun Niagara 1) or without the same instruction set. Another

example of heterogeneous multicore processor is the Cell (see Figure 17) produced by Toshiba, Sony and

IBM in particular for the Sony PlayStation PS3. It involves a Power PC core for task distribution as main

core and 8 specific cores (or co-processor) dedicated to complex computations. The 9 cores are

interconnected through an “interconnect module”.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 53 Réf. CCC/13/001303 – rev. 05

Figure 17: Cell: example of a heterogeneous multicore processor.

Homogeneous multicores are easier to design and to analyse, in another hand, heterogeneous multicores are

dedicated to a particular application and more efficient in particular on energy consumption point of view.

This classification should not hide a particular feature of modern multicore processors which can have

hidden cores realizing particular functionality independently from the other cores. A common situation that

can be encountered is a multicore with N homogeneous cores that execute customer codes and few other

cores that execute internal code in order to realize some function like accelerating a network access. Some

multicores embed, in place of these extra cores, hardware accelerators
21

. These two types of feature are not

always well documented and are even not always identified as complex IP. These complexes IP are

sometime bought by the chip manufacturer to an IP provider.

A second axis of classification lies in the position of the L2 Cache. Indeed if the L1 cache is always

attached to the core and separated within L1 instruction cache and L1 data cache, the L2 cache

- can be allocated to a single core (e.g. Freescale P50xx or P40xx families),

- allocated to a subgroup of cores (Intel core 2 quad),

- Shared amongst all cores (IBM Power 4 Figure 16).

With a L2 cache dedicated per core, the L1-L2, communication is local and interconnect is located below

each L2 cache. With a shared L2 cache, interconnect is located between L1 and L2 cache. This can create

non confidence in the L2 cache and lack of determinism. Local L2 caches are nevertheless more and more

difficult to implement when the number of cores increases. This solution remains thus applicable up to 8

cores.

A third axis of classification lies in the nature of interconnection amongst cores and peripherals.

- Buses like Freescale MPX bus which can be compared at a first glance to a standard board bus with

address and data burst sending is difficult to apply when the number of interconnected cores or

21 We consider that a core is at least a processing element that implements an instruction set (ISA) available for the

end user. A hardware accelerator implements an algorithm wired by hardware.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 54 Réf. CCC/13/001303 – rev. 05

peripheral increase. Such buses are no longer applied to multicore processors and are not applicable

to more than few cores (link to arbitration impact on performances.

- Buses continue to be implemented in ring topologies.

Most of the multicore processors are in fact multicores microcontrollers. The interconnection means

have to ensure communication amongst the cores but also amongst cores and the peripherals. The

number of interconnected actors increases more than the number of cores and others technologies are

needed.

- Crossbars type interconnection are applied,

- The most common approach in today multicores is an interconnect block (named generically

interconnect and for instance CoreNet
TM

 on Freescale microcontrollers, CoreLink
TM

 on ARM

microcontrollers, etc.) consisting of multi-switches network allowing to connect cores to each other,

core to peripherals and DMA to memory controllers.

Depending upon the number of connected actors, these interconnect switches can take various

topologies at 1D or 2D.

- They can be the basis for more complex topologies for many-cores architectures with group of

cores linked together with buses or crossbar and these clusters of cores connected together through

an interconnect.

Memory topology around the core is another important concern of modern multicore processors. Memories

were in general placed around the cores however the horizontals distances increasing the classical

bottleneck constituted by memories become more and more important. It is tempting to stack memory on

top of processors in order to use vertical proximity. For instance the Teraflops Research Chip introduced in

2007 by Intel is an experimental 80-core design with stacked memory. Major challenges in this domain are

process integration and heat evacuation
22

.

Other questions that can be addressed facing a multicore processor are the implementation or not of

multiple threads per core or the extension of instruction set (see [24]). For example Intel has introduced in

2010 a dual thread - dual core processor that consist, for each core to sustain the execution of two threads

simultaneously, the global performance is like the one for a 4 cores processor. This is also the orientation

followed by Freescale for the T-series where the first product is 12 dual-threated cores with correspond to

the execution of 24 threads in parallel.

The number of application hosted on a multicore microcontroller has drastically increased during these last

10 years. Adaptation to different customers to sustain all their needs – problem to be solved already for

current mono core microcontroller generation – becomes more and more difficult to tackle.

This configurability of modern multicore microcontrollers has to be taken into account in the state of the

art of these COTS even if it is not driven by purely physical or technical purposes but by commercial ones.

The configuration of microcontroller is done through registers that allows the customer to activate and tune

the features offered in order to cover at best his needs. The extension of these register increases (around

5000 registers for the configuration of the P4080) producing complex configuration process and associated

test. For instance, some registers are only reserved to the manufacturer, so that the impact of modifications

22 For instance, this is already the case in mobile platforms,: the SoC (containing microprocessor, hardware
accelerators, interconnect and IO controllers) and the memory chip (DDR2/3) are already stacked onto each other,
and the temperature is monitored by the SoC chip to be sure that the memory chip will cross its max temperature
junction 85 or 105 °C depending on the quality needed. The next evolution will be the WideIO memories where the
silicon die of the memory will be directly connected to the silicon die of the SoC in order to get very short latencies
and very wide bandwidth.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 55 Réf. CCC/13/001303 – rev. 05

of the values stored in these zones is unpredictable and non-described on the basis of reference manuals.

Some other registers are hidden and can change drastically the behaviour of the COTS (that is in particular

the case for interconnect configuration). This major concern is a key point in the control of modern

multicore microcontroller usage.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 56 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 57 Réf. CCC/13/001303 – rev. 05

6 METHODOLOGY

6.1 BREAKDOWN LEVEL

Three main different breakdown levels can be envisaged.

1. A level in which the COTS under study is considered as a complete white box. At this level, the

considered failure modes are those of internal detailed blocks of the COTS.

 When describing the COTS at this level, it is possible to access a full description of the

internal faults and theirs impacts on the output of the COTS.

 Hence it is possible to define very precisely the faults that can be detected internally and

the failures that have to be mitigated by architectural means.

NOTE: Knowing that a full white box down to the gate level is never achievable, one difficulty

is to determine which level of detail would be sufficient to allow adequate mastering of both the

functional and dysfunctional behaviour of the COTS and reach acceptable coverage of potential

internal failures or errors. See further considerations on that issue below in para.6.2.

2. A grey level in which the COTS is modelled with interconnected generic blocks. The COTS

model is not fully representative of the component itself. This breakdown level is chosen

sufficiently detailed in order to be heuristic and not too detailed in order to be free of property

rights. In the present report this condition must be strictly respected because no document under

NDA can be used. In an operational study this detail level can be lowered.

Using generic blocks in the model allows identifying the blocks most relevant and generic faults

that will cause failures, and the common causes to different failure modes.

3. An architectural level that considers the COTS under study as a black box. At this level, the

failure modes are those of the output flows of the COTS. This breakdown level allows

identifying a set of COTS failures and thus defining corresponding detection/ mitigation means.

Indeed only failures perceivable outside of the COTS can be identified/detected/mitigated by

architectural means.

Figure 18: Black box (left) and grey box (right) point of view on a COTS. Note: the white box point of view has

not been represented here.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 58 Réf. CCC/13/001303 – rev. 05

6.2 ABSTRACTION LEVEL

Independently of breakdown levels, a choice must be made on the level of detail (or abstraction) for which

we consider the information exchanged by the COTS internally and with its environment.

Let us consider, for instance, COTS output signal transmitted on an external bus. There are basically three

admissible levels on which this signal can be described:

1. Functional level. This level can be viewed from two points of view :

a. System transfer function
23

: This point of view is not accessible in the present study that

considers the COTS independently of any particular use. It has to be noted that system

functional detection/ mitigation means are not directly addressed in the present report.

b. Hardware transfer function
24

: for instance delivering a coherent signal to the different

Software levels. These “electronic” functional detection/ mitigation means are addressed

here.

2. Logical level. This level considers the output of the COTS from their global logical content point of

view (For instance a 32 bits output signal). It is the most adapted level on which it is possible to

catch the failure modes of the COTS and to identify the possible detection/ mitigation means.

3. Physical level. At this level, the COTS output are separated and signals are detailed up to physical

characteristics (voltage, amperage, timing, etc.). This abstraction level is certainly too low for an

effective description of failure modes on a complex COTS due to the number of I/O pins.

Nevertheless it can be considered for some particular cases, in order to characterize a failure mode

identified at higher level (for instance bit stuck at a value, voltage oscillations, timing shift, etc.) or

in order to estimate the efficiency of detection/ mitigation means (for instance the monitoring of a

signal shape). This abstraction level should allow also identification of failures which are due to the

technology used (e.g. sensitivity to SEU - Single Event Upset-, sensitivity to current or voltage

fluctuation, etc.).

6.3 FAILURE MODES AT LOGICAL LEVEL

6.3.1 List of failure modes

At logical level, these failure modes can be classified into classes described below. This level deals with

transfer of some information, encapsulated or not in a coherent message. Here “information” has to be

taken in a general meaning for instance address, payload or control – see definition in section 3.2.2-. This

transfer can be characterized by

 Three states that symbolized the transmission of the message that can be normally received loss or

repeatedly untimely received (the corresponding faulty transition is described in the following

paragraphs);

23 In this report, “system transfer function” refers to the description of the applicative service provided by a hardware
block, but more generally by complete COTS, to a functionally connected hardware block or to an environmental
media.
24 In this report “hardware transfer function” refers to the description of the service provided by a hardware block to
connected hardware blocks or to an environmental media, for instance the software.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 59 Réf. CCC/13/001303 – rev. 05

 A state diagram that refine at logical

level the states and transition of the

information carried by the received

message. The states, symbolized on

Figure 19 by s1, ... , sn, are in one hand

admissible states - the logical

admissible states of the information as

it has been specified- and in the other

hand forbidden states that should not

be reached in normal conditions. The

transitions of this diagram are,

consequently, in one hand, the

transition specified and in the other

hand, some transition forbidden

between two admissible states or

between an admissible state and a

forbidden state (see section 7.2.2 for an example).

 Two possible events can plague this information transfer:

 A structural or temporal disturbance of the message encapsulating information. In this case it is

impossible to enter into the information state diagram;

 A disturbance in the information state diagram, although the message is sent at the right time. In this

case a transition between states is not realized, is realized untimely, or is realized between two states

that should not be linked (forbidden transition). .

This classification is instantiated in the following categories (see [25]
25

).

1. Loss of message:

This mode corresponds to the absence of delivery

of message when it should have been emitted as

represented.

This mode as an independent mode makes sense if

and only if the energy state (high or low) that is

reached when message is lost is not an admissible

logical state of the information

If this condition is not realized, the loss of the message (for example following an open or short

circuit on the transmission line) lead to a message that is interpretable by the receiver (for instance

as a 0) we then prefer to assimilate this failure to an impossible transition of information to another

state (described below).

Note that this is a modelling choice that has no consequences on the final result.

25 In [26] disturbances in transitions of the state diagram are supplemented by a third category – erroneous transition
from x to y when z is requested. This type of failure mode “at solicitation” is not considered here for sake of simplicity
and because it leads in general to the same detection means than untimely transition failure mode type. In other
way, the untimely transfer of message was not considered because usually covered by other pre-existing design
rules. Similarly abnormal sequence of messages was not considered in this reference because the technologies
were robust to these failures.

Figure 20: representation of message loss.

Figure 19: Example of a logical state diagram for information
transfer. Although some transition have been hidden on the
scheme, all are in principal possible unless some applicative

restrictions.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 60 Réf. CCC/13/001303 – rev. 05

Physical characterisation: If necessary the state reached will be defined as well as the potential

duration of the information loss.

2. Untimely transfer of messages:

This mode is two folds.

Firstly, the untimely message transferred

can be in advance. In the limit case of this

advance message is systematics one can

speak about babbling: receiver or transfer

media saturation by extra communication.

An example is proposed on Figure 21

where green line is the awaited activity

and the squared signal is

observed.

Secondly, the untimely

message can be late. In this

case one can speak about

abnormal delay in information

transfer. Figure 22 proposes

an example, which dashed

line the awaited signal and full

line the observed signal delayed

from the first one.

3. Abnormal sequence of messages

T

h

i

s

f

a

i

l

ure mode corresponds to an inversion in the receipt order of several messages (Figure 23). Consider

for example two messages X and Y that should be transmitted and received in the order X, Y. An

abnormal sequence of messages occurs if Y arrives before X.

Figure 21: representation of untimely transfer of message.

Figure 23: representation of abnormal sequence of messages.

Figure 22: Untimely transfer of message (Delay)

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 61 Réf. CCC/13/001303 – rev. 05

4. Untimely or forbidden transition of information

This failure mode is also named information corruption or

erroneous information transfer. If necessary, the duration of the

error can be considered.

In the particular case of information transferred with a protocol

that considers the address of the transmitter, like ARINC 664 or

ARINC 629, such a failure affecting this address can be

particularized in “impersonation”.

When the transition is realised between two admissible states, the

transition will be said “untimely”. When this transition take place

between two states that should not have been connected either

because no transition was specified between these two states, or

simply because the state of arrival is forbidden.

5. Impossible transition of an information

This failure mode can correspond to different categories: if it

affects a part of an information burst it corresponds to an

erroneous information transfer, if it affects a complete

information burst or multiple information bursts, it correspond to

an abnormal latency in information transfer. In this case the

duration of the latency could be considered with respect to the

typical fault tolerance time interval of the system;

Relevant combination amongst previously defined failures can also be

considered as they can reveal malfunctioning depending upon the

technology of the external output or of the transfer to the software, these

failure modes have to be adapted.

6.3.2 Comprehensiveness of the failure model

The failure model proposed is built to be comprehensive at logical level.

An entity whatever it is ensure some responsibilities with respect to its environment. These responsibilities

are materialized on some outputs on which some messages are sent. At logical level all faults of the

considered entity result into some failure mode of these output messages
26

.

A message can encounter only the following modes:

- The failure of the message sending relatively to other messages;

26 At physical level an internal fault may also result in Electromagnetic emission, heat, power over consumption, etc.
that have only be considered marginally here.

Figure 25: Representation of
Impossible Transition between
information states. . The green

dashed lines represent the
requested transitions. The red

empty lines the realized
transitions.

Figure 24: Representation of
untimely transition between
information states. The green

dashed lines represent the
requested transitions. The red

empty lines the realized
transitions.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 62 Réf. CCC/13/001303 – rev. 05

- Failure of the message sending itself;

- Failure of the message intrinsic constitution the message sending being correct.

The first category consists in abnormal sequences of messages, the second in untimely transfer of messages

either delayed or advanced with a limit case in which the message is lost. The third category deals with

messages sent in the right timing and order and which failure is on the information carried (data, addresses

or controls). In this last category, information can change untimely to another valid value, to a forbidden

value or to a valid value along a forbidden transition – this sub-category has been named untimely or

forbidden transition – or information is frozen.

Following Figure 26 summarized this discussion and illustrates the completeness of the different cases.

Figure 26: Tree representation of failure cases

Note

The failure modes described in this subchapter can be linked to failure modes more commonly used. Table

3 provides an example of such correspondence.

Current failure model Correspondence with commonly

used failure modes

Loss of message

Loss

Untimely transfer of messages Erroneously transmitted in time
Abnormal sequence of
messages

Erroneously sequenced order

Untimely or forbidden transition
of information

Erroneous data

Impossible transition of an
information

Table 3: correspondence between the current failure model and commonly used failures

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 63 Réf. CCC/13/001303 – rev. 05

The current failure model is chosen because of the ability to locate it at a given abstraction level and the

ability to demonstrate at this abstraction level that the model is complete.

6.3.3 Particular failure modes at the hardware – software interface

When software is embedded by the COTS it has to be considered has an element of context for the COTS

hardware (see Figure 27). COTS hardware has responsibilities with respect to this software as it has with

respect to others external media. Considering the failure of these responsibilities leads to some new failure

modes. Although these failure modes are inherited from the previously described failure model, it appears

practical to particularize it.

The main responsibilities of hardware toward software are:

 Realize computation requested by the software;

That corresponds to:

- Get software instruction,

- Get Data for computation,

- Push computation results.

The corresponding failure modes can be defined as:

- No program instruction or data got,

- Erroneous instruction or data got,

- Latency in data delivery (Maximum Execution Time

drift),

 When more than one application is embedded (in particular

in an IMA framework) a new responsibilities appears that is

to respect partitioning of the software application.

In this case associated failures can be defined as:

- Inversion of tasks.

The non-respect of partitioning can also lead to already

identified failure mode like

 Loss or blocking of program instruction outing that is equivalent as “no program instruction

outing”,

 Cross corruption of two software independent applications that is equivalent to erroneous

calculation outing and

 Latency in program instruction outing.

6.4 FAULT CLASSIFICATION

Previous subchapter has classified the type of failure modes that can be considered for COTS outputs or

COTS block interfaces. It appears also important to classify, errors at the origin of these faults and failures,

from the point of view of their manifestation in COTS development process.

Figure 27 : General View on COTS with

embedded SW. The lines represent flows

that can failed, dashed lines represent

flows that shall not exist. The

partitionning symbolized here can be

spatial or temporal.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 64 Réf. CCC/13/001303 – rev. 05

ED79A-ARP4754A [1] mentioned the separation between systematic errors and random hardware failures

and ED-80/DO-254 [4] separate the two concepts (see for instance the definition of fault in section 3.2.3)

The separation of these two concepts has been theorized and extensively used in standard like IEC 61508

and associated standards:

3.6.5 Random hardware failure

Failure occurring at a random time, which results from one or more of the possible degradation

mechanisms in the hardware. (IEC 61508 [26] part 4)

3.6.6 Systematic failure

failure related in a deterministic way to a certain cause, which can only be eliminated by a modification of

the design or of the manufacturing process, operational procedures, documentation or other relevant

factors (IEC 61508 [26] part 4)

We associate SEU (Single Event Upset) / MBU (Multiple Bit Upset) and other radiation initiated failures

to random failures because they can be characterized by probabilities. Both Random Hardware Failures and

SEU/MBU are out of scope of this study.

As suggested in the definition above systematic failures can be due to errors in the design, the

manufacturing process or the usage (operational procedures).

COTS design errors

Even if state of the art is respected, some errors can be inserted in the COTS design, because of the

complexity of the design process. These errors are typically:

 Non instantiate features,

 Untimely instantiate features (for instance non documented features that interfere with

documented features),

 Erroneous behaviour of some features in some particular conditions uncovered by standard test

patterns,

 Etc.

These errors are documented in errata list for those that have been already discovered and in certain

conditions under dedicated NDA signed between the COTS manufacturer and the platform developer –

these errors are considered as known by the community. Other errors are discovered by users during their

tests. Due to the increasing constraints on time to market, the proportion of these errors, found by the

platform developer, could tend to increase.

In general design errors do not age during product lifetime. They can thus be tested, discovered and

mitigated before product entering into service.

COTS manufacturing errors

These errors can be for instance

 Pollution of silicon by tungsten during chemical vapour deposition,

 Micro cracks in wafer,

 Etc.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 65 Réf. CCC/13/001303 – rev. 05

Some of them are undetectable during design tests and can evolve (this is the case for impedance that may

vary with time in case of pollution if impurity migrates). Burn in can detect some of these errors but many

other requires additional architectural measures in order to be detected and/or mitigated.

COTS usage errors

COTS face usage errors when some divergences appear between intended and effective use. For instance a

component specified for a stabilized voltage and facing during its life a strongly varying voltage, etc.

Notes:

 Effect of normal rate of ionizing particle (SEU, MBU, etc.) enter in the random failure category;

 Although it is not statistically random (it does not obey an exponential law), ageing of Deep Sub

Micron components enters in the category of “random failure”.

While usage errors are covered by specification robustness and dating, COTS random failure and

manufacturing process systematic failure are covered by detection or redundancy mechanisms dedicated to

safety critical behaviours.

The COTS design errors need to be systematically covered by mitigation mean, in order to guarantee

feature behaviour. We will see in chapter 9 that this means can rely in some extent on test and in the

following chapters on architectural mitigation means.

6.5 GENERAL PROCEDURE

6.5.1 General overview

Figure 28 shows the general positioning of COTS faults their propagation to system by direct impact or to

system through their impact on software.

Based on this point of view the approach defined here has two folds, firstly a top-down approach, from

COTS interfaces to COTS internal structure, and secondly a bottom-up approach from COTS internal

structure to system.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 66 Réf. CCC/13/001303 – rev. 05

Figure 28: General positioning of COTS faults

6.5.2 Top - down approach

This first part of the analysis focus on COTS output failure modes. These modes have a particular position

in the analysis as they are independent of the considered COTS internal architecture. The COTS may

evolve to a new technology, if it has the same outputs, it will have the same output failure modes. Only

failure occurrence may vary but this topic is out of the scope of the current study that focuses on systematic

failures. Failure modes of outputs are also of great importance for establishment of Points of Observation,

considering that internal exchanges of the COTS are not accessible.

This approach start in chapter 7 with output failure classification regarding the output technologies and the

failure modes described in previous sections. For each interface technology, the existing detection and

isolation means are listed. First causes in the COTS internal faults are then found. This top down approach

is applied to the COTS selected in chapter 5.

6.5.3 Bottom - up approach

This approach aims at analysing internal architecture of COTS and determining failure modes of internal

Blocks, their consequences on outputs and existing internal detection means. COTS internal architectures

are deduced from analysis of COTS user manuals, reference manual and other COTS vendor

documentations
27

.

27 Within this public study, no vendor documentation under NDA is used.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 67 Réf. CCC/13/001303 – rev. 05

COTS internal architecture is of great importance in order to determine the origin of failures observed on

output flows. Depending upon the subject, the architecture considered in grey box models have been either

the one propose by the reference manual or some simplified version of it (e.g. DDR, bridge).

Architectures proposed within reference manual can be a starting point for the analysis but when the usage

domain is specified and some analyses are accumulated, it can appear that simplifications are possible for

instance grouping of blocks or removal of unused blocks (see subchapter 6.1).

COTS internal block failures are defined on the basis of failure model already detailed in previous sections

for COTS selected in chapter 5.

The COTS internal failure detection /mitigation existing mechanisms are accessible through the reference

manual. The link is made with previous study on outputs, by determining fault impact on output failures.

Faults that have no impact to the output failures are listed in order:

 For the study to be robust to changes of context;

 To identify the limits of the study.

This bottom-up approach is applied in chapter 8 to the COTS selected in chapter 5.

Both approaches top-down and bottom-up, are then complementary in order to cover most of COTS

failures and define the best possible detection / mitigation strategy.

6.5.4 Failures Detection and mitigation

The first important means of mitigation of design failure is to detect them and mitigate them during tests so

that they cannot occur in operation. This procedure is explored, in subchapter 9.2, in order to define zone in

which block failure modes are tested with a sufficient level of confidence and blocks for which this level of

confidence is not sufficient to rely only on test.

In parallel different detection mechanisms can be defined:

 Possible detection of output failures are:

 Direct observations, by integration of Point of Observation, so that some failed output can be

directly discriminated from normally functioning outputs. This direct observation request that

some point of reference is given on the COTS output. These points of reference can be absolute

(e.g. the comparison of an output value with a maximum admissible value) or relative (e.g. the

comparison of an output value with a value calculated independently of the monitored COTS);

 Controls and observations so that COTS is stimulated by a control signal emitted at some Point

of Control and results checked at some Point of Observation.

 Possible COTS abnormal functioning can be monitored by COTS internal resources. This internal

monitoring can be accessible and can be used to improved failure detections. These mechanisms can

even be indirect measures of the global health of the COTS so that the abnormal functioning is not

localised nor directly allocated to a given block fault.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 68 Réf. CCC/13/001303 – rev. 05

Some of these mitigation suggestions are directly issued from the failure detection of previous step.

Sometime, a more global view is needed: some detection / mitigation means do not reduced to direct

observation or control/observation. It is for instance possible to control / observe several COTS with one

mechanism or one detection means can rely on an external (system) mechanism to mitigate the error

detected. These mitigation means is deduced in chapter 9 for the selection of COTS made in chapter 5.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 69 Réf. CCC/13/001303 – rev. 05

7 COTS INTERFACE FAILURE MODE ANALYSIS

7.1 INTRODUCTION

This chapter does not directly cover a task of the project as initially defined in chapter 0 but introduces

preliminaries to COTS internal failure studies through a black box approach of the COTS with a study of

its interfaces and associated failures. These failures are considered with respect to the logical level failure

model, detailed in section 6.3. When necessary some causes at physical level have been considered in order

to justify the possibility of a failure mode. Moreover for most complex interfaces (PCI, PCIe, etc.) some

control information have been considered as enablers of other information (typically addresses and data),

considering the failures of their supporting signals as causes for the failures of these considered

information. It can be the case for instance of clock or reset signals but other control signals are also

considered.

In the context of this study, as different families of COTS are studied, these interfaces are considered in full

generality and without connexion to a particular COTS. Even though, on this black box approach can be

branched a top-down approach considering

 That the output is associated to a COTS interface (for instance a PCI message is emitted by a

PCI interface block) and

 That the failure of this message can be generated by this COTS interface block or by more

buried blocks
28

.

It pursues two purposes:

 Firstly, it presents the technologies and failure modes of interfaces that are the only ones on which

an action is possible. By the way it exhibit also the failure mitigation mechanisms defined by the

information transfer standards. It thus prepares to COTS internal faults (chapter 8) and Detection,

localisation, mitigation mechanisms (Chapter 9);

 Secondly, failure modes and failure mitigation mechanisms of component interfaces are not only

those of the transmission line but are also those of COTS blocks involved in this transmission. It is

in particular important, when analysing a COTS Reference Manual to consider interfaces failure

mitigation mechanisms as they are and not as COTS internal failure mitigation mechanisms. Indeed

these mechanisms are designed to protect the zone between the mechanism encoding block, the

transmission media and the decoding blocks of the receiver and not between the mechanism

encoding block and COTS more buried blocks.

Although its interests listed above it is important to note that this approach does not allow detecting

combined effect generated by the failure of a buried block contrary to a bottom up approach. Both

approaches are thus complementary.

The outputs covered here are:

• Discrete interfaces,

• SPI bus,

28 In next pages we consider that a “buried block” is an internal block of the COTS that is not directly interfaced with
COTS context.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 70 Réf. CCC/13/001303 – rev. 05

• PCI bus,

• PCI Express bus,

• ARINC 429,

• MIL-STD-1553

They have been organized from the simplest to the most complex without any tentative of classification

between criteria related to

 Their protocol: buses or networks,

 Their connection: parallel – serial,

 Their extension: intra board, inter board, inter computing platform.

These classifications are recalled in Table 4.

 Protocol Connection Extension

Discrete interfaces - - intra board,

inter board,

inter computing

platform

SPI Bus Parallel intra board

PCI Bus Parallel Intra or inter

board

PCI Express Bus Serial intra or inter

board

ARINC 429 Bus Serial inter board,

inter computing

platform

MIL-STD-1553 Bus Serial inter computing

platform
Table 4 : classification of studied interfaces;

7.2 DISCRETE I/O

7.2.1 Description

Discrete interfaces of COTS are labelled in general in technical documents GPIO (General Purpose IO).

They obey Transistor-Transistor-Logic (TTL) standard and have their logical low level between 0V and

0.5V and their logical high level between 2.4V and 5V.

GPIO interfaces are to be considered as simple interfaces. Their study corresponds to the first purpose

defended in introduction of chapter 7.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 71 Réf. CCC/13/001303 – rev. 05

7.2.2 Failure modes

The failure modes of a GPIO are classified through the categories exposed in subchapter 6.3.

As already outlined in this subchapter, the “Loss of message” cannot be considered as acceptable mode as

the lower energy state (0 volt) will be interpreted by the receiver as valid information.

Similarly, the mode “untimely transfer of message”

cannot be considered as valid mode as a GPIO as always

a physical value even when no information is transmitted

through this value.

The failure mode “abnormal sequence of message” is

included in this case in the mode “Untimely or forbidden

transition of information” as sending for instance 10 in

place or 01 can be seen either as an abnormal sequence

or as an untimely transition from 01 to 10.

In the case of GPIO a general state model can be

constructed (Figure 29) considering that basic

information is one bit that can have a value 0, 1 and an

undetermined state between 0.5V and 2.4V that can be

erratically interpreted by the receiver as a 0 or a 1.

Figure 29 shows on the left side the undetermined voltage band and the logical states associated to the

different value, and in the right side the corresponding state diagram at logical level.

On this diagram the transitions:

• T1, T1’, T2 and T2’ are “Forbidden transition of information” to or from a forbidden state than

can lead to erratic interpretation of information by the receiver;

• T3 is an “Impossible transition of information” that stay in a forbidden state;

• T4 and T5 can be functional stable values or “Impossible transition from a functional state” and

• T6 and T7 can be normal functional transition or untimely transition to another functional state.

The transitions T1, T1’, T2, T2 and T3 can only be generated by the output stage or also possibly by

the power supply that can lower the upper level in case of loss of power. They are not discriminable

from normal functioning state except in case of output physical monitoring. This monitoring is difficult

to design and considering the previous cause analysis and the simplicity of GPIO output stage a

monitoring of power supply can efficiently replace it.

The transitions T4, T5, T6 and T7 can be generated by many different COTS blocks. As already note

they are not discriminable from normal functioning on the basis of logical state diagram alone. Ways to

discriminate these failures from normal functioning can be:

 Distortion in the shape of the signal at physical level. This monitoring is difficult to design.

 Comparison between the logical signal and a reference signal. The comparison can be done

- with an external information (spatial detection);

Figure 29: GPIO undetermined band and
corresponding logical level state diagram;

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 72 Réf. CCC/13/001303 – rev. 05

- With a calibrated periodic signal (for instance a calibrated sequence of 0 and 1 at power on

and/or power off) in such a way that receiver can make comparison between the receipt and

what should have been sent.

7.2.3 Intrinsic failure mitigation mechanisms

No intrinsic failure mitigation mechanisms are defined on GPIO. Subsection 9.3.4.1.1 lists some

potential mechanisms implementable.

7.3 SERIAL PERIPHERAL INTERFACE (SPI) BUS

7.3.1 Description

SPI is a simple interface that allows one chip to communicate with one or more other chips. It is

• Synchronous,

• Serial,

• Full-duplex,

• Not plug-and-play,

• There is one and only one master, and one (or more) slaves (see Figure 30) for more details:

Figure 30: SPI bus basic principle

Figure 30 presents the way SPI function in a typical star type topology. It should be noted that a Daisy

Chain type topology is also possible in some particular application (as JTAG) with the slave 1 MISO used

as slave 2 MOSI.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 73 Réf. CCC/13/001303 – rev. 05

The transmission is cadenced by the clock signal generated by the master. On Figure 30, it can be noted

that there are two wires for data (MOSI and MISO), one for each direction, so that

• Data is serialized before being transmitted,

• One bit of data is transferred on each data wire each time the clock toggles (full duplex and

synchronous communication).

The communication is always initiated by the master that selects the receiver slave through CS (Chip

Select) signal. The detail of the communication (bit order, length of data words exchanged, etc.) is

particular to each slave and encoded in master registers.

At physical layer each interface (CLK, CS, MISO, and MOSI) can obey TTL or at least obey the same

constraints: a voltage range corresponding to 0 logical value, a voltage range corresponding to 1 logical

value and an undetermined range between both.

SPI interface is also considered as a simple interface. As GPIO, their study corresponds to the first purpose

described in introduction of chapter 7. The analysis of SPI can be easily extended on the same basis to

other simple interfaces like UART or I²C.

7.3.2 Failure modes

In the present chapter we suppose that the Complex COTS under study is the master. In case of complex

COTS under study is slave of another complex COTS, many of the following failure are non-applicable.

7.3.2.1 Loss of message

Only CLK can be lost because the state of lower energy (0V) does not correspond to any admissible

physical state. The cause of Clock loss can be the COTS Clock loss or a failure of SPI driver.

7.3.2.2 Untimely transfer of message

SPI transfers information at each clock transition so that, untimely transfers of CS or Data are

equivalent to “Untimely or forbidden transition of information” described in a following subsection,

except if we consider a transition of SPI module Clock. In this scenario, the master induces an

information transfer between two clock pulses. This kind of failure can be due to the master clock, to

the SPI clock through a corruption of the SPCON (Serial Peripheral Control Register) register. A priori

no buried blocks can be involved except the clock. Then three cases can occur:

a. Untimely transfer of one chip select signal,

b. Untimely transfer of multiple chip select signal,

c. Untimely transfer of data signal.

In cases –a– and –b– correct data can be sent to the wrong register(s).

In case –c– data may be lost or sent to the wrong register as they are transferred before normal

transition of chip select.

7.3.2.3 Untimely or forbidden transition of information

a. Untimely transition of chip select

One chip is selected in place of another. This kind of failure cannot be simply discriminated

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 74 Réf. CCC/13/001303 – rev. 05

from a normal functioning. It can be caused by the SPI driver itself, the transfer line or more

buried block of the COTS.

b. Forbidden transition of chip select: this case corresponds to a chip select that is not in the

list of chip. By the way, no chip is selected and the information will be lost.

c. Untimely transition of multiple chip select

Many chip signals are selected simultaneously in place from others. Like the first one this

failure cannot be simply discriminated from a normal functioning. It can be caused by the

SPI driver itself or by more buried blocks in the COTS. The probability that the transfer line

cause such a failure is very weak and can be excluded except in case on board design error

out of the scope of the present study.

d. Untimely transition of data

One bit or several bit changed untimely given an erroneous coherent new data. This failure

can be caused by SPI driver or transmission line but more probably by more buried blocks

in the COTS master or slave. Master can corrupt MOSI data and Slave MISO received data.

This type of failure is not detectable at logical level because this transition is similar to

normal transition generated through normal functioning.

Detection of this failure mode type needs a reference point. For instance time redundancy of

sent data will basically detect failures of SPI driver or downstream block (in general SerDes

– serialiser-deserialiser block); redundancy by a data generated by the COTS can detect

failures of the internal datapath of the COTS, and downstream blocks including SPI driver.

Data cannot suffer a forbidden transition as, at this logical level of abstraction, all data

values are possible.

7.3.2.4 Impossible transition of an information

a. Impossible transition of clock signal (clock frozen)

This failure can be due to COTS clock failure or failure of SPI driver or downstream

elements like SerDes. It is detectable by a slave that can verify the vivacity of the

communication, namely that this communication is still alive.

b. Impossible transition of one chip select

It is impossible to change the chip selected for communication.

c. Impossible transition of multiple chips select.

It is impossible to change the multiple chips selected for communication.

d. Impossible transition of data

Erroneous data sending.

Causes of these three kinds of failure and ways to prevent them are similar to those of “untimely

or forbidden transition”. If the impossibility of transition is permanent a vivacity check can be

implemented. Its implementation at applicative level allows covering failures of more buried

blocks.

Note: in this particular clock loss of SPI driver, chip select or data, correspond to impossible transition of

these data.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 75 Réf. CCC/13/001303 – rev. 05

7.3.3 Intrinsic failure mitigation mechanisms

There are no real intrinsic failure mitigation mechanisms in SPI protocol.

However, some slave devices are designed to ignore any SPI communications in which the number of

clock pulses is greater than specified. This measure is not general and some slaves only ignore extra inputs

and continuing to shift the same output bit.

When implemented, this mechanism can partly protect against “Untimely transfer of data signal” or

“untimely or forbidden transition of data” when it occurs between two clock pulses.

Some COTS manufacturers specify some parity bits in their implementation of SPI standard (see for

instance Texas Instrument TMS320DM36x microcontroller user manual). These parity bit mechanisms are

encoded in the SPI driver and cover only the SerDes and the transmission line. They of course request in

order to be effective that the slave codes parity bit on MISO signals and decode parity on MOSI signals.

7.4 ARINC 429

7.4.1 Description

The ARINC 429 specification, defines electrical characteristics, word structures and protocol necessary to

establish bus communication.

The bus structure is founded on a single transmitter – or source – connected to N receivers (N being 1 to

20) on a communication media consisting of a twisted wire pair. Because of this very rigid structure, data

can be transmitted, on each communication channel, in a unique direction only (communication is qualified

as simplex). Bi-directional transmission requests two channels or buses.

The most common ARINC 429 bus topologies are star or bus-drop ones (see Figure 31).

Figure 31: ARINC 429 topologies: star (on left side), bus-drop (on right side).

The Source / Receiver role is contextual to each bus. Indeed each apparatus can participate to several

ARINC 429 buses with different roles for each of them.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 76 Réf. CCC/13/001303 – rev. 05

Few characteristics make ARINC 429 a very robust communication bus:

 Bipolar with return to zero data encoding (Figure 32) that avoid physical layer failures of the type

“impossible transition of information”;

Figure 32: ARINC 429 encoding.

 Fix data words of 32 b (Figure 33) ;

Figure 33: General ARINC 429 word structure.

o P: Parity;

o SSM: Sign / Status Matrix: for particular critical data;

o Payload;

o SDI: Source/Destination Identifier;

o Label: type of data and corresponding identifiers.

 Emitter signature in SDI.

Next section presents the failure modes associated to this communication interface and subchapter 8.2.4

details corresponding causes on COTS blocks.

7.4.2 Failure modes

7.4.2.1 Loss of message

Loss of a frame in A429 can be causes by the media, the emitter or the receiver.

A failure of the media, for instance an open or a short circuit will cause an impossibility to transmit a

frame.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 77 Réf. CCC/13/001303 – rev. 05

A failure on the emitter ARINC 429 Driver can be of different types. Frame may not be emitted or be

emitted in a format that cannot be decoded by the receiver or be emitted to the wrong address so that the

normal receiver will never receive it.

A failure on the receiver can cause the loss of the message and more generally of the information it carries

when:

 it never transmits the received message to higher layers;

 it corrupts the information so that it is no longer interpretable.

7.4.2.2 Untimely transfer of message

Untimely transfer of message can be generated by emitters or receivers for instance in case of saturation of

some FIFO.

7.4.2.3 Untimely or forbidden transition of information

As each communication information can be corrupted in such a way that information that should remain

stable suffers an untimely transition to another state valid or forbidden transition to a non-valid state. In the

case of A429 the particular encoding of information presented on Figure 32 efficiently protect against non-

detection of such a failure during transmission and encoding/decoding by physical layers of emitter or

receiver.

Such an error can indeed be only generated by higher layers that could corrupt information before its

physical encoding or after the decoding.

Another possible corruption of information during its creation, transfer or reception is a forbidden

transition of label to another label. Two cases are possible:

- Firstly, the new label does not exist. In this case the receiver will ignore the word receive

and the information will be lost;

- Secondly, the new label exists in the receiver label list. In this case the receiver will consider

the word considering it comes from another emitter creating impersonation.

7.4.2.4 Impossible transition of an information

The scenarios applicable to “Untimely or forbidden transition of information” of information are

applicable to this case without modifications.

7.4.3 Intrinsic robustness of the physical layer

o ARINC 429 differential communication line relies on RZ (Return to Zero) bit encoding;

o Voltage and timing are defined for each bit states;

o A Minimum gap of at least 4 bit times is expected;

o On the physical layer, the ARINC 429 bit encoding uses RZ bipolar modulation and is defined with

3 states of a differential signal: Null state, HI for high and LO for low with timely defined durations

and transitions;

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 78 Réf. CCC/13/001303 – rev. 05

o There is no overlap of the voltage levels definition used to define the states. Furthermore the

duration of each state is part of the logical state definition as one logical bit time is defined by a

state HI or LO half bit time plus a Null half bit time.

7.4.4 Intrinsic failure mitigation mechanisms

Several mitigation mechanisms are embedded in the ARINC 429 message at logical and functional level

allowing the possible detection of corrupted data when it occurs:

o Configurable Parity Bit encoding and check;

o Sign/Status Matrix (SSM) bit field;

o Source/Destination Identifier bit field;

o ICD predefined label and data format for different emitter types (industry standard).

7.5 MIL-STD-1553

7.5.1 Description

MIL-STD-1553 is a half-duplex communication serial bus. MIL-STD-1553 uses a command/response

protocol that enables highly deterministic communication making it ideal for real-time command and

control functions, which typically require the transfer of data at a periodic rate (isochronous

communication).

A typical MIL-STD-1553B system consists of:

 A redundant MIL-STD-1553B bus:

The standard dictates that all devices in the system be connected to a redundant pair of buses to

provide an alternate data path in the event of damage or failure of the primary bus. Bus messages only

travel on one bus at a time, determined by the Bus Controller;

 A Bus Controller (BC)

The Bus controller is the master on the bus. The centralized bus controller allows the scheduling of

data transfers with microsecond accuracy and very low jitter (see footnote
Erreur ! Signet non défini.

 on page

92). The bus may support several BC, for redundancy purpose, but only one shall be active at one

time;

 A set of subsystems with an embedded Remote Terminal (RT):

A Remote Terminal can be used to provide an interface between the MIL-STD-1553B data bus and an

attached subsystem, a bridge between a MIL-STD-1553B bus and another MIL-STD-1553B bus. RTs

are slaves of the BC from MIL-STD-1553 bus point of view.

 It may also comprise a Bus Monitor. However, bus monitors are specifically not allowed to take part

in data transfers, and are only used to capture or record data for analysis. Alternatively, a BM is used

in conjunction with a back-up bus controller

Resulting bus Topology is depicted on Figure 34

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 79 Réf. CCC/13/001303 – rev. 05

Figure 34: MIL-STD-1553 Bus topology.

The main features of MIL-STD-1553 are

 The connection is

- Serial,

- Differential: twisted pair,

- Isolated: each device is connecter to the main bus by a transformer;

- Redundant : 2 twisted pairs;

 Data encoding with (Figure 35)

- Self-clock: the clock pulses are carried by the message itself.

- Manchester encoding: see Figure 35.

Figure 35: MIL-STD-1553 data encoding;

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 80 Réf. CCC/13/001303 – rev. 05

 Protocol based on a Command-Response approach: The BC Commands, the RT Responds or Acts.

 Word format (Figure 36)

Figure 36: General MIL-STD-1553 word structure.

Figure 36 presents the three type of word exchanged on MIL-STD-1553 bus.

 Command Word with T/R: Transmit/Received bit;

 Data Word: that effectively carry data;

 Status Word that carry some control and status as :

o ME: Message Error,

o I: Instrumentation,

o SR: Service Request,

o BCR: Broadcast Command Received,

o Bu: Busy,

o SSF: Sub-System Flag,;

o DBA: Dynamic Bus Acceptance;

o TF: Terminal Flag.

For all word type the MSB (Most Significant Bit) is the Parity (P) and the three LSB (Low Significant Bit)

is the Synchronisation signal
29

 (Sync). It is noticeable that “Sync” is identical for command and status

words that lead to non-trivial learning phases by Remote Terminals.

 A MIL-STD-1553 messages cannot be reduced to a word. The three types of words combined

together form a message. Figure 37 presents a typical sequence message for data transfer between

two Remote terminals. It imply the sending of two commands words by the Bus Controller, Data

word between the two RT and a status sending to the BC.

29 The Sync signal duration is 3µs: 1.5μs low followed by 1.5μs high for data words and the opposite for command
and status words. Such a sequence cannot occur in the Manchester code. Thus, it allows detecting a word arrival
and separate clearly data from other words.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 81 Réf. CCC/13/001303 – rev. 05

Figure 37: Sequence diagram of a typical message compound of 4 words in MIL-STD-1553.

Many other messages are implemented like for instance control messages with a command word to

a RT requesting a status from this RT to the BC.

These salient characteristics of MIL-STD-1553 bus can be classified in first level of OSI (Open

Systems Interconnection) abstraction layer model [18]. This classification, performed for instance

in [27] in the framework of MIL-STD-1760 [28] helps classifying the failure causes (Table 5).

OSI Layers MIL-STD-1553 features

Higher layers Not applicable

Network Layer Services offered at this level:

 Data management: sampling

and queuing;

 header and identifier,

 message sub-addresses,

 mode codes,

 word count,

 T/R flag,

 RT status word.

Data Link Layer Serialization / deserialization,

 Word parity,

 “Sync” bits.

Physical Layer Manchester encoding,

 Tailored sources,

 Receiver end characteristics…

Table 5: Mapping of MIL-STD-1553 on OSI layers;

This OSI mapping is not implemented in MIL-STD-1553 that mixes the different layers. It has thus to be

considered as guidance for the analysis.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 82 Réf. CCC/13/001303 – rev. 05

7.5.2 Failure modes

7.5.2.1 Loss of message

At physical layer, loss of message can be caused by the media, the emitter and the receiver.

In case of an error on both wires of the media (short circuit, open circuit) the signal is totally lost.

In case of an error one of the two wires only one component of the signal can be detected (for instance the

V+). Signal is invalidated at Data Link Layer and considered as lost because the 3 first bits (“Sync” signal

on Figure 36) cannot be decoded.

At physical layer, in emitter and transmitter both signals (one on each wire of the twisted pair) are encoded/

decoded separately. The loss of one or both of these two channels will have the same effect

At Data Link Layer, an error in the encoding, transmission or decoding of Sync (transition of sync to a

forbidden value – for instance 000 or 111) will cause the rejection of the word and thus its loss.

At network layer, loss of command word will lead to loss of the complete message. Transition of RT

address to a forbidden address in command word will also cause the loss of the message.

7.5.2.2 Untimely transfer of messages

At physical layer, a loss of status message could lead to a retry by the BC if a retry process has been

defined in layers higher to MIL-STD-1553 layers
30

.

At Data Link Layer a Parity error could cause a similar behaviour.

At network layer, in case of corruption of its local RT (Remote Terminal) address, the RT can respond to a

BC command addressed to the corrupted RT address and untimely transfer of messages (i.e.

impersonation). If no other RT shares the corrupted RT address, the MIL-STD-1553 communication will

be effective. If another RT shares the corrupted RT address, a collision will most likely happen between the

two RTs. The intrinsic robustness of the communication layer will lead to response interruption after

collision detection.

7.5.2.3 Abnormal sequence of message

No cause of abnormal sequence seems to be found in the three layers directly addressed by the MIL-STD-

1553 protocol.

Remote Terminal (RT) and Bus Controller (BC) can generate abnormal sequence of messages in their

higher layers.

7.5.2.4 Untimely or forbidden transition of information

At physical layer, in case of inadequate shielding of the twisted wired, Electromagnetic field could

generate a bit flip and by the way a transition of information to a forbidden state. Indeed transition from an

interpreted 0 to 1 necessitate of a V+ to V- and V- to V+ (see Figure 35).

Error in the Manchester encoder/decoder may also lead to Untimely or forbidden transition of information.

30 None retry process is defined by MIL-SDT-1553. Such a retry can be useful in case of “on demand messages” and
has to be defined in layers higher than MIL-STD-1553 layers.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 83 Réf. CCC/13/001303 – rev. 05

Data Link Layer has no direct way to create such an Untimely or forbidden transition of information

transferred. However, an untimely transition of Sync message from command/status to data value may

cause its interpretation as the wrong type of message. If interpreted as this new type, the information

transferred may correspond to an untimely transition of information.

At network level, untimely transition of address will lead to loss of message for the normal receiver and

Untimely transfer of messages for the wrong receiver. This untimely transfer of message may in turn be

interpreted by the receiver and constitute an untimely transition of information or a transition to a forbidden

state.

If the address is not a valid address, the forbidden transition of address leads to a loss of information.

In case of particular message such as multiple transfer of data word initiated by an unique command word

(consider Figure 37 with multiple data words), it is possible that the RT emitters sent different words in

abnormal sequence leading at receiver level to an untimely transition of information.

7.5.2.5 Impossible transition of an information

At physical layer, it is possible Manchester encoder could generate such a failure in very particular way

(totality or part of words stuck at 0 or 1).

Network and Data Link Layers seem not to be able to generate such an error.

Impossible transition of information can be generated in emitter or receiver at higher layers not directly

related to MIL-STD-1553.

Figure 38 presents a summary of the preceding explored failures.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 84 Réf. CCC/13/001303 – rev. 05

Figure 38: Summary of MIL-STD-1553 failures states

7.5.3 Intrinsic robustness of the physical layer

Non Return to Zero (NRZ) (encoding on V+, V-) allows detecting most of the word loss situations.

Indeed 0v not correspond to an admissible state.

MIL-STD-1553 differential communication line relies on Manchester bit encoding where each

transition is timely defined. This protect against most of the causes of impossible transition;

The differential communication line robustness is reinforced, in particular in harsh environmental

conditions (lightning strike induced perturbations, induced susceptibility constraints, etc.) by :

 The use of a transformer coupling between the main bus and the device;

 The shielding of the twisted pairs;

 The important V between the states 0 and 1;

 The relatively low bandwidth
31

.

31 The two last points are strongly correlated.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 85 Réf. CCC/13/001303 – rev. 05

7.5.4 Intrinsic failure mitigation mechanisms

Several mitigation mechanisms are embedded in the MIL-STD-1553 message at Data Link and Network

Layers:

o MIL-STD-1553 is specified redundant (2 pairs of twisted wires);

o Bus Controller centralized and controlled Command / Response protocol;

o Parity Bit encoding and check;

o Predefined command, data or status message format;

o The standardized protocol requires to the RT to only respond to commands received from the bus

controller. This response shall be delivered in a certain time slice;

o If a message does not meet the validity requirements defined, then the receiver invalidates the

message and discards the data. In addition to reporting status to the bus controller, most remote

terminals today are also capable of providing some level of status information to the subsystem

regarding the data received;

o RT hardware timeouts will translate babbling idiot temporal failures on the bus to fail silent [27];

o BC and TC monitors the electrical activity of the bus so that emission BC and TC send commands

only when the bus is idle since a minimum gap of at least 4 bit times;

o BC can take a sanction by particular command word by making a TC to become silent. In case of

redundant configuration of MIL-STD-1553 this inhibition is realized through the second bus.

7.6 PCI BUS

7.6.1 Description

PCI is a parallel bus (32 or 64 bits) embedded on and inter-electronic boards, deployed massively in

Personal computer world. It has been initially developed by Intel in 1992 as a microprocessor short

distance local bus for interconnection with its resources. Even if its evolutions relax this constraint it is

used by many microcontrollers to communicate with their high speed peripherals. On most recent

microcontroller it disappears in the benefit of PCIe (serial PCI).

It is a synchronous and parallel bus where address and data are multiplexed on the same lane. It has the

particularity to address directly memory zone: word sent are labelled by their address in memory

independently of the peripheral. .

Communication Protocol layer

The PCI communication is established amongst a master and a target (slave) under the control of an arbiter.

The PCI bus supports multi-master. Indeed, some PCI buses node can be master or target depending on the

arbiter contextual arbitration. This arbitration is in general done at applicative level although PCI standard

give some recommendations. The arbiter can be included in one of the masters as PCI compatible COTS

include usually a PCI arbiter. However, it shall be noted that in general the common PCI arbiters pre-

programmed by the COTS manufacturer on a fair arbitration mode (type Round-Robin
32

). This kind of

arbitration is not suitable for avionics that constraint access of components to the network. This

characteristic imposes introducing an external arbiter (in general a PLD) to master all the transactions and

disconnecting COTS master arbiters.

32 Round-Robin is a scheduling algorithm that assigned time slices to each process in equal portions.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 86 Réf. CCC/13/001303 – rev. 05

The structure of messages transiting on a PCI bus is the following (see Figure 39 and Figure 41):

 Address / Data (A/D) that transfers on the same lane addresses and data;

 Command / Byte Enable (C/BE) that transfers the type of action to be accomplished : read, write, etc. ;

 Frame, DEVSEL (Device Selected), IRDY (Initiator Ready), TRDY (Target Ready), STOP that control

the device selected for the transaction, the beginning, the end and the request to abort the transaction

(see details below);

 REQ (Request) and GNT (Grant) dedicated to the communication between Master type PCI Devices

and Arbiter in order for these Masters to request the Arbiter for master role (REQ) and for the Arbiter

to authorize them to take this role (GNT).

 CLK (Clock) for synchronisation;

 PERR (Parity Error), SERR (System Error) allow error reporting.

At physical level

 Address / Data is coded on 32 or 64 wires for 32 bits and 64 bits PCI respectively;

 Bus Command / Byte Enable (C/BE) on 4 wires;

 Control information: Frame, DEVSEL, IRDY, TRDY, STOP are coded on 5 wires;

Figure 39 : PCI Pin list from PCI Local Bus Specification [29]

Transfer is requested by a master to the arbiter by pulling REQ to 0V. The authorisation granted by the

arbiter to this device to act as master is realized by pulling GNT signal to 0V. Transmission begins by an

address phase. During address phase, C/BE indicates if the data transferred will be read or write (others

operation are allowed by the standard that are not used in avionics applications). The transmission can be

realized by single words or by burst with data sending by packet of several successive words after an initial

address sending. During the Data phase, C/BE indicates the number of wires that will transmit the data

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 87 Réf. CCC/13/001303 – rev. 05

(Byte enable). Figure 40 shows an example of such a transaction for a read operation. One can note that an

address phase (with the appropriate C command) is followed by several data bursts.

Figure 40: Chronogram for a basic read operation, showing the state of the different signal involved. Signal

followed by“#” are active at low voltage level [29]

The master controls the signals IRDY, in order to initiate the transaction, and FRAME in order to control

the duration of transaction (Figure 40), in particular for data bursts. On its side, the Target control

DEVSEL that allows the target to signal that the address requested by the Master correspond to the one

store in its register, TRDY (target Ready) that allows the target to inform that it is ready for transmission

and STOP that allows the target to stop the transaction for example if its buffer is full. IRDY and TRDY

can pause the transaction; STOP aborts it and liberates the bus for a new transaction. If the STOP signal is

set before the beginning of data transfer, the STOP is interpreted by the Master as a Retry request.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 88 Réf. CCC/13/001303 – rev. 05

Figure 41: a typical PCI architecture with three connected devices of master type and an arbiter. Only main lines

have been represented. Bold line stand for multiple wires; R is REQ and G is GNT.

7.6.2 Failure modes

At the abstraction level addressed in this section a message transmitted on the PCI bus is split in its data,

addresses and various controls. The modes loss of message, untimely transfer of message and abnormal

transfer of message should be detailed on these different components. In spite of this, we consider that the

functional content of the message is contained in its data and Addresses components. Other signals are only

considered as enablers of this message transfer. Their failures will then result in failures on data and

Addresses components. The clock that can have particular behaviour and impact will be also considered.

Interaction between PCI devices and Arbiter will be considered since arbiter plays an important role in the

transaction organisation.

7.6.2.1 Loss of message

All the transfers are operated on a TTL type
33

 line so that at the basic level of abstraction described no

information (of any type) can be lost except the CLK for which a low energy state is not functionally

admissible. This CLK lost can be caused by COTS clock loss or PCI interface failure. It can be easily

detected by PCI Target on the bus if the vivacity of the bus is monitored
34

.

However, considering all the signals except A/D and clock as enabling signals lead to possible loss of

Address or Data due to failures in the communication of C/BE or control signals. For instance if IRDY

cannot have transition to 1 no address exchange is possible, if it cannot have transition to 0 no data

exchange is possible. All these different failures are physical failures of the I/O stages of the PCI devices or

protocol errors of the PCI interface block.

33 « Type » means here that the nominal voltage value is not 5v but 3.3v but the logical principle is identical: low
voltage is logical 0, high voltage is logical 1 and intermediate value can be unpredictably interpreted as 0 or 1.
34 By Active vivacity monitoring we mean a monitoring of the network functioning that request common action at both
considered terminations, for instance when periodically a Master sent a particular time dependant request to a target
in order to monitor that the network is operational. .

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 89 Réf. CCC/13/001303 – rev. 05

7.6.2.2 Untimely transfer of messages

a. Untimely transfer of address

In general, the abnormal generation of an address transfer is protected by the control signals at PCI

interface level. In the case of an address generation by more buried blocks in the COTS, the risk is

the untimely transmission of data (see section “Untimely transitions of target address” in the same

subchapter.). A particular behaviour could nevertheless appear at PCI interface level. Indeed, if at

target PCI interface level, FRAME has encountered a transition to 0 (asserted), then the target will

wait until IRDY is settled to 1 (de-asserted). The next transaction initiated by the master can

interpreted by this target even if dedicated to another target and can lead to erroneous behaviour:

i. If the C/BE assigns a Read then normal and abnormal targets may emit simultaneously;

ii. If the C/BE assigns a Write the command can be executed in both targets.

b. Untimely transfer of data flow

Information transfer between two clocks edges has been treated in the case of SPI. The transfer of

data to or from the wrong target or the transfer at the wrong time will be covered in the following

paragraphs.

7.6.2.3 Abnormal sequence of message

This mode occurs when PCI interface transfers a data set 1 after a data set 2. These data sets can be

sent to or receive from different target or the same target. The PCI interface is simple and is not

able to just invert two data sets. Such a failure can only be generated by buried blocks upstream to

PCI interface. It is difficult to track but can be partly covered by a process counter.

7.6.2.4 Untimely or forbidden transition of information

a. Untimely or forbidden transition of target address

The case of abnormal transformation of data into address has been examined before as a particular

case of untimely generation of an address sending. This section examines the transition to an

erroneous address.

The failures causes can be located to the PCI interface block or on more buried blocks. Local effect

can be a loss of data for the normal receiver and more rarely an erroneous behaviour of the receiver

that receive data. Indeed, if error is located on the PCI interface, for instance corruption of an

address registers (CONFIG_ADDRESS) this corruption can give non interpretable address. On the

other hand, if Address is corrupted upstream of PCI interface block, the wrong address generated

can be consistent with existing address. Due to its similarity to normal functioning, such an error

cannot be covered by simple ways as already mentioned on SPI errors.

b. Untimely or forbidden transition of Master address

PCI can develop such a kind of behaviour close to impersonation. Considering that Master are

always ready to initiate transaction (REQ periodically emitted toward the arbiter), if the arbiter

untimely grant the wrong Master some data can be lost from a master and data untimely receive

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 90 Réf. CCC/13/001303 – rev. 05

from another master that can cause erroneous behaviour of a target if command is Write and of the

masters if command is Read.

c. Untimely or forbidden transition of data

Transition from a correct data sent or received, to another data. Local effect is an erroneous

behaviour of the receiver. Causes are similar to those of Untimely or forbidden transition of target

address.

7.6.2.5 Impossible transition of an information

a. Impossible transition of target address

This mode corresponds to an impossible transition to a correct address. It can be caused by the PCI

interface that is stuck on some target address and cannot change it or that cannot generate a

particular address. It can be caused by some buried blocks upstream of the PCI interface that

request permanently exchange with some target, or cannot generate exchanges with some other. It

can also be caused by some electrical error of the PCI interface or downstream elements. It can

affect the behaviour of some target that cannot exchange data with a master on time. Like in the

case of Untimely or forbidden transition it is difficult to separate such a failure from a normal

functioning, however a vivacity check can be imagined between some master and some targets (see

SPI corresponding section).

b. Impossible transition of master address.

This mode is close to the Untimely or forbidden transition of Master address. It can be due to the

Master itself that become silent on PCI bus in general due to the PCI interface for instance if it

cannot request (REQ signal) authorisation to initiate transaction. It can also be caused by an

impossible transition of the Grant signal from Arbiter side. Again, such a failure can be close to a

functional behaviour and thus is difficult to detect. However, a regular vivacity check can avoid it

from being latent.

c. Impossible transition of data

This mode corresponds to a data signal remaining unchanged in time. It can be caused by the PCI

interface or upstream buried block. The effect of this impossible transition depends upon its

duration. Vivacity check, like process counter, can be implemented in order to detect frozen data. If

they are computed and decoded by high level software processes they can cover many internal

blocks.

7.6.3 Intrinsic failure mitigation mechanisms

 Parity:

A parity bit is computed by the PCI Device that drives the bus
35

 on A/D and C/BE lines and

distributed to PCI Device that read the bus through a Parity line (PAR). The PCI Device that read

the bus compares the parity it computes with parity distributed on PAR. In case of discrepancy:

o During the address phase then the target raises a system error (SERR);

o During the data phase then the target raises a data Parity ERRor (PERR).

35 This PCI Device is the Master in Master Write operation and the Target in Master Read operation.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 91 Réf. CCC/13/001303 – rev. 05

SERR and PERR inform the master about the error. The standard does not specify the backup mode

to be applied. For instance in a PC, SERR can conduct to a reboot and PERR to message sending

retry.

 Master abort:

In PCI protocol, if no PCI device has answer to an address request after three clock pulses; the

message is decoded by a default device on the fourth pulse. At the fifth pulse if no response has

been obtained the master status become “Master abort”. This mechanism can help determining that

a device is silent on the bus.

It should be noted that these failure mitigation mechanisms cover the communication media and the

downstream part of PCI interfaces as they are implemented in these interfaces.

7.7 PCIE BUS

7.7.1 Description

Contrary to PCI that was a parallel communication bus, PCIe is a purely serial bus appeared in 2004 in

order to replace progressively PCI. A recent report on the certifiability of this bus in avionics context can

be found in [30].

In addition to an extra gain in number of wires, PCIe realize a new increase in bandwidth moreover gain

was also obtained in the configurability. Table 6, shows the performances obtained in the 2 variants of PCI

(plus PCI-X) and the 6 variants of PCIe.

Specification
Link

Width

Link

frequency

Max

Bandwidth
Transmission Voltage

PCI

32 bits
33 MHz 133 MBps

Half Duplex

3.3 V

(Originally

5 V)

66 MHz 266 MBps

64 bits
33 MHz 266 MBps

66 MHz 533 MBps

PCI-X 64 bits

133 MHz 1066 MBps

Half Duplex 3.3 V 266 MHz 2133 MBps

533 MHz 4266 MBps

PCIe

1 bit

(x1 Link)

2.5 GHz 500 MBps

Full Duplex
0.8 V to

1.2 V

5 GHz 1 GBps

8 GHz 2 GBps

x2

2.5 GHz 1 GBps

5 GHz 2 GBps

8 GHz 4 GBps

x4

2.5 GHz 2 GBps

5 GHz 4 GBps

8 GHz 8 GBps

x8

2.5 GHz 4 GBps

5 GHz 8 GBps

8 GHz 16 GBps

x16

2.5 GHz 8 GBps

5 GHz 16 GBps

8 GHz 32 GBps

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 92 Réf. CCC/13/001303 – rev. 05

Specification
Link

Width

Link

frequency

Max

Bandwidth
Transmission Voltage

x32

2.5 GHz 16 GBps

5 GHz 32 GBps

8 GHz 64 GBps

Table 6: PCI (inc. PCI-X improvment) and PCIe characteristics in GHz, MBps and Voltage [31];

These achievements are due to the use of a serial bus.

Indeed in a parallel bus like PCI routing the board with 32 or 64 tracks induces skew
36

 and potential jitter
37

between the different tracks and the clock track. The constraint of synchronisation of signals requests that

the clock period is larger than jitter plus skew times
38

. This lower bound on clock period induces an upper

bound on the frequency of the parallel bus.

PCIe is a full duplex serial bus:

 Duplex: contrary to PCI that is half duplex because the structure of the bus allows an emission /

reception at the same time contrary to PCI in which authorisation to emit has to be requested to an

arbiter;

 Serial: data packet are sent on a lane
39

 are constituted through successive encapsulation of data

acquired in passage throughout abstraction layers.

PCIe communication is structures in 3 abstraction layers (Figure 42):

Figure 42: PCIe abstraction layers [32] [31]

 Transaction Layer (TL) ensures:

36 Skew is the reception time delay between two signals emitted on two different tracks.
37 Jitter is the undesired deviation from true periodicity of an assumed periodic signal in electronics [8].
38 The complete equation includes terms related to characteristic times in emitter and receiver. These times rely to
silicon technology and decrease with technologies
39 In more elaborated version of PCIe, serialized data are spread and sent over multiple lanes.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 93 Réf. CCC/13/001303 – rev. 05

o Flow Control Management: Flow Control is a Credits based mechanism (see section 7.7.4),

which objectives are

 to regulate the transmissions in order to prevent PCIe Devices from Receive Buffer

overflow and

 to apply transactions’ ordering rules.

o Assembly/Disassembly of TL Packets

 Data Link Layer (DLL) ensures:

o Data error detection through the encoding/decoding of a CRC (see section 7.7.4) on data and

addresses– see the paragraph “Intrinsic failure mitigation mechanisms” below for details;

o Retry management (see section 7.7.4) that defines a procedure to retry transactions under

certain conditions in particular when no acknowledgement of receipt is receive from the

receiver –see the paragraph “Intrinsic failure mitigation mechanisms” below for details;

o Link state management that manages the power consumed by the PCI devices.

 Physical Layer that ensures:

o Link initialization, training, maintenance and recovery in order to recognize a PCI device in

the bus. This feature of PCIe avoids using of high level resources in order to map the bus;

o SerDes that serialize and un-serialize packets.

o Guarantying of maximum values for Jitter and BER (Bit Error Rate) with respect to budget

allocated– see the paragraph “Intrinsic failure mitigation mechanisms” below for details;

Each of these features contributes to the packet structure represented on Figure 43.

Figure 43: Packet structure with the colour code of Figure 42 [31]

The characteristics of the PCIe bus constraints its physical structure. Its serial character structures each lane

with a pair of wires. Its character full duplex requests an in-lane and an out-lane (2x2 wires for an I/O-

lane). PCIe is implemented using point-to-point links. A set of point-to-point links consisting in a PCIe bus

is called a "Fabric” (Figure 44).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 94 Réf. CCC/13/001303 – rev. 05

Figure 44: PCIe bus topology [32]

Four different types of components can be found in a fabric:

 A unique root complex that can support several PCIe bus and connect PCIe buses to CPU,

Memories, etc. Root complex includes naturally a Switch. The root complex is included as PCIe

controller in PCIe Devices like micro-controllers;

 Switch that connects a PCIe upstream branch to downstream branches allowing the connection to

several endpoints;

 Bridges that connect PCIe buses to other buses like PCI buses;

 Endpoints represent other PCI devices connected to the bus. Endpoints can be in turn switches that

extend the PCI bus in a tree topology.

Considering an endpoint to endpoint communication in the network defined by Figure 44. It is important to

note in order to illustrate the importance of the different layers in a safety point of view, that:

 The TLP is encoded by the emission end-point and decoded only by the receiver end-point ;

 The DLLP is encoded and recoded by each PCIe controller crossed along the path.

7.7.2 Failure modes

PCIe structure outlined in the paragraphs above is very complex. Each feature listed in the three abstraction

layers has its own state diagram that allows describing its behaviour. The approach already chosen in the

PCI failure analysis to concentrate on data and addresses and to consider the other characteristics as

address / data enablers will be used again here. In the case of PCIe this choice leads to consider as enablers

many packets of information (for instance Acknowledgement packets) or part of the frame like the

different CRC as enablers of a correct communication (protocol realisation) and not direct transmission of

information to a particular address. Each of the failure modes of the subchapter 6.3 is declined to the three

abstraction layers exposed previously and on encapsulated address / data that come from (outgoing packet)

or that go to (incoming packet) buried blocks of the COTS. Some of the failure modes explored cannot be

generated by some of the application layers, when they are generated by the lower application layers they

can be generated by the PCIe controller or some basic features of bus elements, when they are generated by

higher layers, they can be generated by buried blocks of considered COTS.

The classified failure modes are of the following types:

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 95 Réf. CCC/13/001303 – rev. 05

7.7.2.1 Loss of message

This failure mode can occur at each of the considered abstraction layer through the following

mechanisms on incoming or outgoing packets (consider Figure 42 and Figure 43 for analysis):

-a- Corruption of the part of the outgoing packet under the responsibility of the abstraction layer

in such a way that the packet cannot be decoded by the corresponding abstraction layer of

the receiver;

-b- corruption of the part of the incoming frame under the responsibility of the abstraction layer

in such a way that it cannot be acquired by the upstream abstraction layer;

-c- untimely triggering of a failure mitigation mechanism under the responsibility of the

abstraction layer on outgoing or incoming frame, in such a way that the frame is blocked;

-d- corruption of the address to which the outgoing frame has to be sent, in such a way that the

receiver does not receive the frame.

Applying these schemes at all abstraction layers gives:

a. at physical layer loss of data can be caused simply by ground short circuit or open circuit of

the bus for instance or at SerDes module level. Very unlikely SerDes could also corrupt -a-

outgoing or -b- incoming frame in a more subtle way that allows it to be sent but not

decoded. -c- is not applicable here, as no mechanism can untimely block a frame at physical

layer. -d- case corresponds to –b- case in the case of physical layer. In general these faults

are quite easy to detect in particular by test when then are due to design errors;

b. at DLL loss of data can be caused by schemes -a- or -b- or by scheme -c- because of

untimely detection of a transmission error, for instance decoding error of the LCRC (cyclic

redundancy Check) computed on the address and data. The backup mode is preview in this

case by the PCIe protocol that asks a transmission retry (Retry Management). Case –d- is

unlikely to occur because it should mean that DLL corrupts a part of the frame not under its

responsibility. PCIe Device power management by the DLL could also block a transmission.

All these errors located on the PCIe controller can be easily covered by tests.

c. at TL loss of data can be cause by schemes -a- or -b- or –c- in the encoding/decoding of the

ECRC. A scenario of type -c- associated with Flow Control Management is unlikely to

happen as this mechanism contribute to the loss avoidance. The status of type -d- scenario is

unlikely as in the DLL case;

d. on more buried blocks (beneath the PCIe controller), -a- and –b- scenario do not correspond

to loss of message but to untimely or impossible transition of information (see below), -c- is

possible depending of the mechanisms implemented in order to guarantee integrity on these

blocks and scenario -d- is of course possible. Like on the other I/O these failures are in

general difficult to separate from normal functioning and are difficult to detect. However, in

the case of a transaction requested by applicative software and never sent to a PCIe output

due to adverse contribution of buried blocks it is possible to imagine redundant way to send

the transaction in order to avoid the same ways. For example some transactions can be

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 96 Réf. CCC/13/001303 – rev. 05

emitted on an SPI bus in parallel to the emission on the PCIe. Such a redundancy is

necessary partial due to the relative performances of both buses.

7.7.2.2 Untimely transfer of messages

Untimely transfer in the sense of babbling cannot be generated on all layers.

a. Physical layer cannot generate such behaviour as it sends directly the frame requested to be

sent. An unlikely scenario could generate this behaviour in case of major failure of the

Physical Layer that could then send all the frame on the same PCIe link.

b. DLL is a good candidate for untimely transfer of messages because of the retry mechanism

that could perform multiple retries of the same frame in case of internal error
40

.

Such a failure can also appear if the physical layer does not transmit received

acknowledgment packets to DLL, or if DLL itself does not consider these acknowledgement

packets. These scenarios are covered by a maximum retry number set to 4 for a specific

frame.

c. TL should not generate any untimely transfer of messages. However it is unable to prevent

DLL to do so: as retry management and Process Flow control are handled by two different

layers they are transparent to each other. As a consequence, Flow Control mechanism will

be unaware if the Data Link retries repeatedly its transmission due to errors on the link.

d. Buried blocks (beneath the PCIe controller) can generate requests to send extra data on the

bus depending upon their complexity. This is studied in next chapter.

In the sense of delay in the message transfer, some abstraction layers have not the same impact

a. Physical layer cannot generate such behaviour as it sends directly the frame requested to be

sent. It can contribute by a non-acquisition of acknowledgment of receipt so that the frame

is sent through retry management;

b. DLL can delayed transfer because it can lost acknowledgment of receipt and then enforced

retry mechanism;

c. TL can contribute to delayed frame through Flow Control Management as its objectives are

to regulate the transmissions and to apply transactions ordering rules. The possibility of

Maximum Execution Time drift has to be considered regarding this mechanism.

d. Buried blocks (beneath the PCIe controller) can generate delays that are studied in next

chapter.

40 A possible cause of error can be linked to discrepancy between Ack_Latency_timer at target level and replay-timer
at initiator level. Indeed this two timers regulate the maximum latency time for acknowledgement sending by the
target, which can itself occupied by other frame sending, and the maximum time the initiator wait the
acknowledgment before to send a new frame. These times rely partly to initial synchronization of PCIe devices.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 97 Réf. CCC/13/001303 – rev. 05

7.7.2.3 Abnormal sequence of message

This failure mode can occurs when data are stored in some buffer or memory before sending or

resending. It is in particular the case in the TL where the packets are stored in transmit or receive

buffers containing several packets waiting for processing and in DLL where they are stored in a

retry buffer before in order to be resent if the acknowledgement of receipt is not received.

7.7.2.4 Untimely or forbidden transition of information

This topic corresponds to the transition to a wrong value of data or address values.

Even if PCIe do not modify the informational content of the frame, it stores it in some buffers and

transfers it so that some corruption can result.

 In case of Untimely transition at physical layer, the LCRC and ECRC (see next paragraphs)

will detect the failure unless their encoding/decoding are themselves faulty.

 In case of untimely transition at data link layer, the ECRC will detect the failure unless its

encoding/decoding is itself faulty.

 In case of untimely transition at transaction layer, the ECRC may not be effective.

 Buried blocks (at higher abstraction layers than the ones covered by PCIe controller) can of

course realise such a transition that is difficult to detect, except by redundant information

ways like the one already mentioned in the case of loss of information.

 In case of forbidden transition (for instance a frame too short) at physical, data link or

transaction layer, the frame will be lost.

7.7.2.5 Impossible transition of information

The previous comments apply to this case. Ways to covers this scenario differs as it is possible to

implement active vivacity mechanisms such as process counters.

7.7.3 Intrinsic robustness of the physical layer

o The PCIe frame is transmitted through two differential tracks. This characteristic improves

robustness.

o The PCIe SerDes encode 8bits on 10bits in order to eliminate too long series of stationary bits

(00000 or 11111) that may lead to synchronisation loss due to the high frequency of the

communication. This mechanism necessary to the correct behaviour of the bus allows also clock

recovery.

o The physical layer is configured in order to maintain the Bit Error Rate (BER) under certain limit.

7.7.4 Intrinsic failure mitigation mechanisms

There are 3 types of failure mitigation mechanisms implemented by PCI Express specification:

a. CRC Computation

b. Frame Re-transmission

c. Adjacent Device’s Memory Availability

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 98 Réf. CCC/13/001303 – rev. 05

7.7.4.1 CRC Computation

As illustrated in Figure 43, PCI Express uses 2 levels of Cyclic Redundancy Check (CRC) in the frame

construction:

 Link CRC or LCRC

 End-to-End transaction CRC or ECRC

End-to-End transaction CRC: ECRC

Figure 45: End-to-End transaction CRC

The ECRC is intended to cover end-to-end data integrity. It is the CRC of the constant part of the PCIe

frame, i.e the Transaction Layer Packet part of the frame (TLP). The TLP is generated by the source

component (Endpoint or Root Complex) and is only forwarded without modification by the intermediate

components (such as switches).

As a result, the ECRC might detect a data corruption during intermediate TLP forwarding.

Note 1: The ECRC can be checked by intermediate components if supported and required.

Note 2: ECRC implementation is optional (refer to chapter 2.7 of [32])

Link CRC: LCRC

Figure 46: Link CRC

The LCRC is intended to cover Link by Link data integrity. It is the CRC of the Data Link Layer Packet

part of the PCIe frame (DLLP). The DLLP is decoded and (re)generated at each step of the end-to-end

communication, meaning that every intermediate component manipulates its data.

As a result, the LCRC might detect a data corruption during the frame transmission between 2 adjacent

components.

However, data corruption occurring internally to an intermediate component might be masked since the

LCRC computation is based on this data.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 99 Réf. CCC/13/001303 – rev. 05

7.7.4.2 Frame Re-Transmission

Figure 47: Frame retransmission principle

The frame re-transmission is implemented on a “Link-by-Link” basis in the Data Link Layer of PCI

Express and is called “Retry Management”. It consists in frame (TLP) re-transmission (called “retry”) in

case of transmission acknowledgement issue.

The acknowledgement consists in a DLLP (called ACK) sent by the receiver to the emitter. It validates the

correct reception of the specified frame. In case of reception issue, the DLLP returned to the emitter is a

NACK (Non-Acknowledgement).

Note: One ACK DLLP may acknowledge several TLPs. When multiple ACK are scheduled for transmission

but not yet transmitted, it is possible to collapse them into a single ACK DLLP. When the emitter receives

an ACK for a given TLP, it considers that all the previously sent TLPs are correctly received by the

receiver.

A retry is performed by the emitter in the following cases:

 A NACK is returned by the receiver

 No ACK nor NACK is returned by the receiver before the acknowledgement timeout value defined

by the PCIe Specification formula ([32], chapter 3.5.2.1), mainly dimensioned by the following

criteria:
o Maximum payload size of the frames

o PCIe link width implemented

o Internal reception processing delay (treated as a constant value of 76 ns for 2.5GT/s PCIe)

In the case of retry mechanism activation, 4 retries are attempted. If no result is obtained, the emitter

commands a Link re-initialization. If this operation fails, the link is considered down.

7.7.4.3 Adjacent Device’s Memory Availability

Figure 48: Adjacent device’s memory availability principle

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 100 Réf. CCC/13/001303 – rev. 05

PCI Express features a credits based flow control on a Link-by-Link basis. The objective is to anticipate

buffers’ overflow. Implementing this mechanism, each PCIe component is aware of the load factor of its

adjacent components’ reception buffers.

The load factor information is contained in DLLP frames called “UpdateFC” (Update Flow Credits), and is

transmitted by each component to its adjacent component after a frame reception. As a result, every

component is kept informed of the adjacent receiver capacity to accept a new incoming frame, and thus is

able to take the decision whether to transmit it or not.

In addition, one type of credit is associated to each type of frame, preventing from irrelevant traffic

interruptions.

Figure 49: Flow control management buffer overview. Here TLP stands for TL Packet, P for Posted, NP for Non-

Posted and CPL for Completion, the suffix H stands for Header and D for Data. [31]

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 101 Réf. CCC/13/001303 – rev. 05

8 COTS INTERNAL FAULTS

8.1 INTRODUCTION

The present chapter studies the modes of COTS internal blocks. For each COTS the particular architecture

chosen is depicted and block features detailed in order to find their failure modes and to capture block

integrated mechanisms designed to detect and/or to mitigate failures. The study performed in Chapter 7

helps separating COTS internal failure mitigation mechanisms from interface failure mitigation

mechanisms.

It appears that due to strong interactions of COTS blocks, failure modes of a block can at the end affects

many different outputs. These interactions and the associated failures can be revealed at different

abstraction levels for the same breakdown level.

Firstly at logical level (see subchapter 6.2), some interactions are documented in the COTS reference

manual (see [33] for a particular example). These interactions have to be enriched, still at logical level, by

some interactions, which are not publically documented but can be discovered in test or obtained under

NDA from the COTS manufacturer. These “Hidden Logical Interactions” are mainly due to some

optimisation in the COTS design. For instance, two blocks of interest can have a common access path with

a third one (Figure 50).

Figure 50: Fictitious example of non-publicly documented common path: (1) Reference Manual representation,

(2) Under NDA representation.

From point of view of COTS manufacturers, these Hidden Logical Interactions participate to the difference

between a good and a bad design, so that these common paths will be visible on some diagrams obtained

under NDA. In the following sub-chapters only failures of documented interactions will be explored.

Secondly, some other interactions can occur at physical level in three cases

- Clock dispatching architecture,

- Power supply architecture,

- Fuse paths
41

 (if any).

41

 With the increasing cost of wafer masks, it become less expensive to produce the most complete version of the COTS and to

inactivate some internal blocks by fuse in order to obtain a less performing version when needed. Information on fuse is in

general difficult to obtain and request in general NDA.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 102 Réf. CCC/13/001303 – rev. 05

This physical layer design interactions is studied for the COTS covered by the following chapters on the

basis of public document only.

Of the same physical type are some unwanted influences that can be considered as failures. These

influences can be due for instance to proximity in the die between some registers and some logical links so

that in particular conditions the register content can be influenced by the logical link activity. Such an

interaction is not directly addressed in the following subchapter although it can be considered as a cause of

some of the possible failures listed. They can be discovered during tests by monitoring key registers (see

chapter 9.2.4).

8.2 BRIDGES

8.2.1 Introduction and Available data

As described in section 5.3.1 bridges interface two buses or networks. We consider here a bridge

interfacing a PCI bus with a PCIe bus. An example of such a bridge is the Tundra Bridge TSI384. This

device connects:

 On one side an up to four lanes PCIe at up to 1GBps per transmit and receive direction and

 On other side a 66MHz PCI or a 133MHz PCI-X.

Addressing is possible in modes: transparent and non-transparent (see section 5.3.1).

Moreover the bridge can be used in two modes with the root (that allocates addressed zones at

initialisation) from PCIe side (Root complex) or alternatively from PCI side (host).

The available resources allowing analysing such a bridge are given in Table 7.

Document name Document description Examples

User Manual The user manual describes the feature, the

main aspect of architecture, the capabilities

and the configuration requirements for the

bridge. It explains also how to use the bridge

from hardware and software point of views.

IDT
®
 Tsi384 PCIe

®
-to-PCI Bridge

User Manual [34]

Errata list Device Errata lists the failure reported on the

bridge and the particular conditions in which

these failures occur. Work around are

proposed by the COTS manufacturer and for

some failure plan to fix them.

IDT, Tsi384 Device Errata [35]

Application notes Available application notes should be

considered as complementary source of

information.

Table 7: list of input in order to analyse a bridge;

Complementary to these data, it is important to refer to PCI [29] and PCIe [32] standard, in particular the

annexes that specify the bridges for two reasons:

 Be confident in the respect of the standard by the component,

 Be aware of the information that is considered as background knowledge by the manufacturer.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 103 Réf. CCC/13/001303 – rev. 05

8.2.2 Architecture description

Figure 51 presents a typical architecture of a bridge PCI to PCIe. It includes

 A PCIe interface with two channels: Transmission and Reception.

 A PCI interface;

 Buffer management block: Buffers are implemented in the bridge in order to handle the bandwidth

and latency differences between the two buses. According to PCIe standard, there shall be several

buffers related to the different types of transactions (e.g. non-posted transaction buffer). The buffer

management block manage the data dispatching between buffers and the priorities in order to

extract them;

 EEPROM controller that interface an EEPROM containing the default configuration;

 Configuration registers;

 Power Management regulating the consumption of the device. These modes are manageable

through PCIe requests. Many consumption modes are available ;

 Clocking manages the clock tree. This block can generate clock to other components;

 Reset manages the reset signal. This block can generate reset order to other components;

 Error handling & Interruption manager block:

o Error handling detects errors;

o Interrupt manager in manages interruptions from internal block or external devices for

internal purpose or propagates interruption to other components.

Figure 51: Typical block diagram of a PCI-PCIe bridge [34]).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 104 Réf. CCC/13/001303 – rev. 05

8.2.3 Block study

8.2.3.1 PCIe and PCI interfaces

PCIe and PCI interfaces have been described in chapter 7. Failure modes detailed in the corresponding

sections are fully applicable here.

The mixed PCI-PCIe status of the bridge adds nevertheless some behaviour.

As depicted on Figure 52, the bridge is interfaced with PCI device that can be Master or Target and with

PCIe device (Root complex or endpoint) that can Transmit or Received transactions.

Figure 52: PCI and PCIe interfaces of the bridge.

Loss of PCIe messages: PCIe device will detect that the bridge is silent.

Loss of PCI messages:

 If the PCI device is master it will detect that the bridge is silent and will generate a master abort.

 If the Bridge is master the transaction can be lost without detection.

8.2.3.2 Buffer management block

8.2.3.2.1 Description

Buffer management block manage:

 PCI read request and corresponding PCIe answer;

 PCIe read request and corresponding PCI data answer;

 PCI write request & data;

 PCIe write request & data.

In conformity with PCIe protocol, buffers include

 Posted transaction buffer for data and some kind of associated headers (buffers on Figure 53);

 Non posted transaction buffer for data and headers (queues on Figure 53).

In fact this block is quite complex and implement several levels of buffer and FIFO that allow storing of

transaction before sending on PCI interface and acknowledgement of read completion (central part of

Figure 53).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 105 Réf. CCC/13/001303 – rev. 05

Figure 53: Buffer management block structure. (Adapted from [34])

8.2.3.2.2 Failure modes

The major source of failure modes of this block will come from discrepancy between buffers (data) and

queue (header). The in/out rate in each buffer frame data shall be the same as the in/out rate in the

corresponding header queue. For instance if one queue header is lost, a transaction will not be realized.

Reciprocally if a queue header is untimely added, an untimely transaction will be emitted. Following

sections detail such kind of behaviours.

8.2.3.2.2.1 Loss of message

The buffer management block can loss transactions typically in case of corruption of a read request queue

(header loss). For instance in Figure 54, transaction number 4 and possibly the following will be lost. This

behaviour is common in upstream and downstream tracks.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 106 Réf. CCC/13/001303 – rev. 05

Figure 54: A scenario for transaction loss in bridge;

On Figure 54, data Nr 4 can never be un-stacked from the buffer or may be wrongly processed with

transaction Nr 5, and so on.

Note: a missing entry in buffer is described in paragraphs 8.2.3.2.2.4 and 8.2.3.2.2.5.

8.2.3.2.2.2 Untimely transfer of message

A typical scenario for untimely transfer of message occurs if an extra entry is inserted in the queue. In this

case when the pointer select this extra entry, an extra transaction is sent with associated undermined data as

represented on Figure 55 or a data corresponding to an added waiting transaction as in Figure 56.

Figure 55: A scenario for untimely transaction emission in bridge. Transaction Nr 6 is send with undetermined

data;

Figure 56: A variant scenario for untimely transaction emission in bridge. Transaction Nr 6 is send with

transaction Nr7 data;

Note: Figure 56 shows that in certain conditions this failure continues after the first error occurs.

Others abnormal scenarios may lead to an untimely transfer of message in case of corruption of data in read

completion caches and buffers. In this case read completion acknowledgement cannot be sent and in this

case command will be retried by the initiator.

8.2.3.2.2.3 Abnormal sequence of messages

In case of buffer manager error at queue filling level, some headers can be inverted so that two messages

can be inverted (Figure 57).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 107 Réf. CCC/13/001303 – rev. 05

Figure 57: Abnormal sequence due to selection of the wrong entry in buffers (transaction Nr2 will be sent before

Nr1).

PCIe specify priority between posted and non-posted transactions. This implies a double structure

queue/buffer for posted on one hand and non-posted on other hand, in the buffer management block. This

double structure may lead to violation of PCIe priority rules and invert the transmission of a non-posted

and of a posted frame.

8.2.3.2.2.4 Untimely or forbidden transition of information

The simplest scenario that can produce untimely transition of information is a data corruption in a buffer

(Figure 58).

Figure 58: untimely transition of information by direct corruption of data buffer.

Another scenario that could lead to an untimely transition can be caused by buffer manager pointer error so

that the pointer on data is desynchronized from the one on addresses (Figure 59).

Figure 59 : untimely transition of information by pointer non-synchronization.

This data shift will certainly continue in time so that all data sent will be corrupted.

In case of buffer manager error at address decoding level (see Figure 53), some headers can be inverted so

that a message is sent to the wrong address. This can be considered as an untimely transition of address.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 108 Réf. CCC/13/001303 – rev. 05

Buffer manager pointer errors could also generate a delivery of a posted transaction with data of a non-

posted transaction and reciprocally delivery of a non-posted transaction with posted data. Such a failure if

it occurs would be permanent because all transaction would be mixed.

Untimely transition of information could be also generated by a pointer location to the wrong queue entry.

This could shift the current queue entries by an arbitrary value (Figure 60) and send a transaction with the

wrong data.

Figure 60: An alternative scenario for transaction loss in bridge;

In case of forbidden transition, the data or the identifiers will not be interpretable and the transaction will

be lost.

8.2.3.2.2.5 Impossible transition of information

Most of the failure scenario presented in paragraph 8.2.3.2.2.4 could be apply to an impossible transition of

information.

In addition a repeated copy of a transaction in a buffer could stuck an information and lead to this failure

mode.

8.2.3.2.3 Failure mitigation mechanisms

It seems that no failure detection allows detecting errors of this block. PCIe LCRC and ECRC are decoded

in one direction or encoded in other direction in order to cover errors from the transmission line. These

mechanisms are not extended to global mechanisms that could cover the buffers.

Figure 61 shows in a simplified manner the process of error detection based on interfaces protections. In

this process, errors detected - for instance by decoding CRC and parity but also all other alert received -

are transmitted to Error handling & Interruption manager block for internal sanctions and to the other

interface for external information. An error generated at buffer management block will occurs after the

protection decoding for incoming flow and before protection encoding for outcoming flow. Such errors

will thus not be detected.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 109 Réf. CCC/13/001303 – rev. 05

Figure 61: (Non) Detection of buffer management block errors.

8.2.3.3 Configuration and status registers

8.2.3.3.1 Descriptions

Principal functions of configuration registers are to enable and configure the realization of some features

(CSR: Configuration Space Register) and to store the status of these features.

The configuration can be charged at power on from an EEPROM through the EEPROM controller or

charged dynamically through PCIe bus.

Basic bridge configuration and status are classified in following categories:

 Address Remapping Registers in non-transparent mode,

 PCI and PCIe configuration Registers,

 Advanced Error Reporting Capability Registers,

 PCIe and SerDes Control and Status Registers.

8.2.3.3.2 Failure modes

Due to the principal functions of configuration and status registers, they have to be considered as enablers

of transaction transfers, so that their failures will lead to malfunction of transaction transfers or wrong

reporting of their status. Two approaches are possible here. The first one considers the failure modes at

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 110 Réf. CCC/13/001303 – rev. 05

transaction transfer level and finds the causes on configuration registers. The second considers modes of

configuration registers and their effects on transaction transfers. Considering this second option the failure

mode of interest are detailed hereafter. In these sections only the modes on configuration are considered.

The modes on status are considered as less important.

8.2.3.3.2.1 Loss of message

Applied to configuration register, this mode should be loss of configuration. This is not applicable for a

register as it contains always a value.

8.2.3.3.2.2 Untimely transfer of message

Applied to configuration register, this mode is “untimely transfer of configuration”. It can occur as

configuration can be charged dynamically through PCIe bus. The cause of such a failure is not on the

bridge but on the external PCIe root complex that sent a configuration to the bridge. It is very unlikely that

the PCIe interface store an admissible configuration sent later to the configuration register.

8.2.3.3.2.3 Abnormal sequence of messages

This mode is not applicable to the configuration register.

8.2.3.3.2.4 Untimely or forbidden transition of information

Applied to configuration register, this mode is “Untimely or forbidden transition of information of

configuration”. It corresponds to an untimely modification of the Bridge configuration. Effects of such a

modification depend upon the corrupted configuration zone.

In case of corruption of:

 Address Remapping Registers in non-transparent mode: it will lead to a wrong address mapping

and thus to send data to wrong address. This may result in a partitioning breaking.

 PCI and PCIe configuration Registers: It can lead to abnormal functioning of PCIe or PCI interfaces

and for instance to loss of messages. It can also lead to send data to wrong address (PCI base

address registers) or to generate multiple retry considering the failure mechanism described in

subsection 7.7.2.2 and in particular the case signalled in footnote 40 that partly rely on

configurations;

 Advanced Error Reporting Capability Registers: Error in this zone can potentially mask errors;

 PCIe and SerDes Control and Status Registers: Error in this zone may lead to failures described in

physical layers of PCIe (see section 7.7.2) and in particular to loss of transactions.

8.2.3.3.2.5 Impossible transition of information

Applied to configuration register, this mode is “impossible transition of configuration”. It is only relevant

in case of configuration change request through PCIe. In this case a PCIe initiated change of configuration

should not be effective.

8.2.3.3.3 Intrinsic mechanisms

There is no intrinsic mechanism protecting configuration.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 111 Réf. CCC/13/001303 – rev. 05

8.2.3.4 EEPROM controller

8.2.3.4.1 Description

Default configuration of the Bridge is stored in an EEPROM controlled at bridge level by a EEPROM

controller. At power on the controller charge the default configuration to in bridge internal configuration

registers.

8.2.3.4.2 Failure modes

Failure modes of the EEPROM will lead to errors on the bridge internal configuration. Effects of such

failures lead to failures listed in sub-section 8.2.3.3 and then on bridge output.

8.2.3.4.2.1 Loss of message

This controller can loss some configuration data so that the corresponding configuration zone is randomly

filled.

8.2.3.4.2.2 Untimely transfer of message

Due to some bridge automata error, the EEPROM controller may erase the current bridge configuration by

default configuration data during bridge operation. This may have effect only if configuration has been

redefined through a PCI or PCIe configuration transaction.

8.2.3.4.2.3 Abnormal sequence of messages

Abnormal sequence in uploading of configuration could lead to errors in several configuration zones.

8.2.3.4.2.4 Untimely or forbidden transition of information

Configuration may suffer of bit flip when transferred by the EEPROM controller.

8.2.3.4.2.5 Impossible transition of information

Configuration may suffer of bit stuck when transferred by the EEPROM controller.

8.2.3.4.3 Intrinsic mechanisms

No intrinsic mechanisms, like checksum, signature, etc., are implemented on configuration uploading from

EEPROM.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 112 Réf. CCC/13/001303 – rev. 05

8.2.3.5 Power management

8.2.3.5.1 Description

Power management block implement the PCI / PCIe power management capabilities mainly used in

Personal Computer context for energy saving. In general this feature is deactivated in avionic context.

8.2.3.5.2 Failure modes

Untimely activation of some power management mode may lead in slow down of transaction treatment and

so to Maximum Execution Time drift.

8.2.3.5.3 Intrinsic mechanisms

Not applicable.

8.2.3.6 Clocking

8.2.3.6.1 Description

External clock signal is divided on a bridge to signal for PCIe interface, PCI interface in master or slave

modes. Clocking architecture rely on several PLL (Phase-locked loop) in order to adapt the 100Mhz

reference clock to PCIe clock (2.5GHz) and PCI clock that depend upon the standard applied (PCI or PCI-

X – see Table 6). This clocking architecture is represented on Figure 62.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 113 Réf. CCC/13/001303 – rev. 05

Figure 62

Figure 62 : Clock structure of Bridge TSI384 (adapted from [34]).

8.2.3.6.2 Failure modes

Clocking can be considered as a physical mechanism. The failure mode pattern defined for more functional

block can nevertheless applied but adapted at a lower level of abstraction.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 114 Réf. CCC/13/001303 – rev. 05

8.2.3.6.2.1 Loss of message

Loss of message applied to clock has to be interpreted as the total lost (i.e. during a time period larger than

a few clock pulses) of one of the clocks. Such a loss is in general permanent. The loss of one or of very few

clock pulses are described later. Three cases can be considered:

 Loss of the reference clock (PCIE_REFCLK_p or _n on Figure 62). In this case, the complete

bridge is silent. The structure exhibit on Figure 62 does not suggest causes for such a scenario;

 Loss of PCIe clock sub block. In this case PCIe interface would be lost (see paragraph 8.2.3.6.2.1).

Such a loss could be generated, for instance, by PLL error;

 Loss of PCI clock sub block. In this case PCI interface would be lost (see paragraph 8.2.3.6.2.1).

This could be cause by PLL error or by configuration error on the programmable PLL.

8.2.3.6.2.2 Untimely transfer of message

Extra clock pulses could be generated by PLL errors or by PLL configuration error on the PCI clock sub

block. De-synchronisation of both block (PCIe and PCI) may cause loss of transactions.

8.2.3.6.2.3 Abnormal sequence of messages

Not applicable as clock signal is periodic.

8.2.3.6.2.4 Untimely or forbidden transition of information

This mode corresponds to extra clock pulses. No mechanisms have been detected that can lead to this

failure.

8.2.3.6.2.5 Impossible transition of information

This mode corresponds to loss of clock pulses. No mechanisms have been detected that can lead to this

failure.

8.2.3.6.3 Intrinsic mechanisms

None

8.2.3.7 Error handling & Interruption manager

8.2.3.7.1 Description

For sake of simplicity, the two blocks, Error handling on one side and Interruption manager on the other

side, have been grouped.

 Error handling block aims at concentrating, ranking and tackling errors by internal means and/or by

sending alert to PCIe external devices (see Figure 63). As a matter of example, the particular case of

PCIe error handling is outlined on Figure 74. The number of errors handled is important (see [34]).

 Interruption Manager: On such a bridge the interruption manager does not generate any

interruption. It is dedicated to the transmission of upstream PCI interruption to PCIe and inversely.

Contrary to Error handling feature that verify various aspect of incoming messages and take

particular sanction, interruption manager only transmit from one bus to the other, particular

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 115 Réf. CCC/13/001303 – rev. 05

interruption messages (Message Signalled Interrupt – MSI). For this reason, bridge Interruption

Manager is not detailed;

Figure 63 : Bridge error handling principle (interpreted from [34]);

Figure 64 : Bridge PCIe error handling principle (interpreted from [34]);

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 116 Réf. CCC/13/001303 – rev. 05

8.2.3.7.2 Failure modes

Only failures of Error handling block is detailed here on the basis of Figure 63.

Figure 74 summarize the error handling block consequences.

Figure 65 : summary of error handling block possible failures;

On this diagram:

 The states on the left side summarize the errors (or non-error) that can occurs on the interface

blocks (this errors correspond to severity level settled version of errors encountered on Figure 63

and Figure 74);

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 117 Réf. CCC/13/001303 – rev. 05

 The central failures are the standard classification scheme used in this report – in green the absence

of failure (normal functioning), in grey the standard failures. They can be considered as the state of

the error handling block;

 The states on the rights represent the overall communication ensemble (as depicted on Figure 52);

 AND gate have to be understand as “in case of occurrence of A and B”;

 Bullet shall be considered as non-exclusive branching condition “A and/or B could occur”.

8.2.3.7.2.1 Loss of message

Loss of an error may appear due to some error of the block or of some configuration so that error does not

result in any internal or external sanction. Such behaviour may cause transmission of erroneous frame

without alert.

If one considers that transmission of erroneous frame is due to some errors or fault elsewhere, such a

scenario implies two errors (on the frame transmission and on the error handling block). If it is considered

that frame transmission randomly suffers from some errors
42

 then error handling loss can directly impact

safety stakes.

In chapter 9, we formalize the importance to test the equipment with monitoring of the integrated error

mitigation mechanisms in order to know if covered failure may occurs in operation or not.

8.2.3.7.2.2 Untimely transfer of message

Untimely detection of error will cause loss of frame and performance slow down by occupation of the PCIe

devices. It may also, by the fact, cause untimely retry and thus untimely transmission of messages.

8.2.3.7.2.3 Abnormal sequence of messages

Abnormal sequence can invert fatal and non-fatal error treatment so that fatal error treatment is abnormally

delayed with consequences close to the loss already discussed. Such behaviour could be caused by wrong

configuration for “error severity level setting” of Figure 63.

8.2.3.7.2.4 Untimely or forbidden transition of information

Even if error is raised in time it can suffer from untimely or forbidden transition of information. Such

information can be the associated severity level, the origin of error (which bus), the nature of error on the

bus … An untimely transition of such information will cause an erratic behaviour of the system depending

upon the failure type. For instance if the error origin suffer an untimely transition, then the sanction will be

addressed to the wrong bus so that messages will be lost on the incriminated interface and faulty messages

can continue to be sent on the faulty interface. In case of forbidden transition, the error will be lost.

8.2.3.7.2.5 Impossible transition of information

Information is stuck so that error characterisation never changed may cause the same behaviours as those

already described on untimely or forbidden transition of information.

42 Faulty frame sending is then a particular life situation.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 118 Réf. CCC/13/001303 – rev. 05

8.2.3.7.3 Intrinsic mechanisms

No intrinsic mechanism seems to be implemented in order to mitigate errors of the error handling block.

8.2.3.8 Reset

8.2.3.8.1 Description

TSI 384 reset feature is driven by different entries summarized on Figure 66:

 A standardised reset message transmit on the PCIe;

 A standardized DL_Down state of the PCIe bus43;

 A configuration message transmit on the PCIe and setting a particular bit in the Configuration

Space Register (CSR) to “reset”;

 A GPIO entry PCIe_PERSTn.

Figure 66 : Bridge level reset feature summary;

When activated, these four entries trig three levels of reset founded on standardized PCIe reset states [32],

[36]:

 Level 0 warm (at power up and without power down phase) and cold reset (with a power cycle

up-down-up);

 Level 1 hot reset;

 Level 2 PCI reset only;

These different types of resets act on:

 Bridge reset with internal register partial or total initialisation;

 PCI reset;

 Bridge traffic draining and TLP request dropping.

If we consider the Reset as a block it should have the interfaces presented on Figure 67.

43 DL_down state (DL for Data Link) means that the bridge has lost communications at the physical or data link layer
with the upstream device.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 119 Réf. CCC/13/001303 – rev. 05

Figure 67 : Context diagram of Reset Block;

From the context diagram of Figure 67 it is possible to construct a state diagram (Figure 68) with on the left

side the states of the input interfaces, in the central part the state of the reset block and in the right side the

state of the outputs.

On this diagram the sticky registers excluded from hot request concern typically many Advanced Error

Reporting registers [36].

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 120 Réf. CCC/13/001303 – rev. 05

Figure 68 : Reset state diagram of the bridge;

Summary: Reset is basically triggered by external GPIO or by PCIe event or requests. It leads to different

level internal reset of the bridge and PCI bus (level 0 and 1) and PCI bus alone (level 2) with some

coherency action on PCIe interface (e.g. Transaction Layer cleaning)

8.2.3.8.2 Failure modes

On the basis of Figure 67 and Figure 68 the following failure analysis can be performed, considering the

failures of the reset block output.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 121 Réf. CCC/13/001303 – rev. 05

8.2.3.8.2.1 Loss of message

A loss of all of the block output will result in an impossible activation of reset mode. This imply an

impossibility to restart the bridge in case of major failure (level 0 or 1) or an impossibility to reset the PCI

link (level 2).

In case of loss of one to three over four outputs, the reset coherency cannot be ensured and the PCI/PCIe

integrity will not be guaranteed. For instance it could occur that:

 The device restarts with an old configuration. This configuration could be corrupted if it is the cause of

the reset but could simply be no longer applicable;

 The TL buffers and the internal buffers and queues of the buffer management block could be full of

transaction waiting acknowledgement from the PCI. These acknowledgments will never be received

because the PCI reset;

 Etc.

Depending where the error occurs in the block, it can be global (for instance if the signal PCIE_PERSTn is

permanently set to 1) or local to one output.

8.2.3.8.2.2 Untimely transfer of message

An untimely transfer of reset block output will lead to a partial (or total) untimely reset.

 In case of total untimely reset, the link will restart after a latency but the Maximum Execution Time

could be impacted;

 In case of partial (one to three outputs over four), the effect is similar to those described in the case of

partial loss (paragraph 8.2.3.8.2.1.);

8.2.3.8.2.3 Abnormal sequence of messages

An abnormal sequence of messages should not have significant effects as the bridge wait that all the

operations are ended before to start correctly.

8.2.3.8.2.4 Untimely or forbidden transition of information

In case of untimely transition of one or more reset information some behaviour could occur that look like

behaviour described in preceding paragraphs. In particular in case of untimely transition of PCI reset bit to

“reset”, the PCI will not reset in coherent manner with others signals.

8.2.3.8.2.5 Impossible transition of information

Similar behaviours will occur in case of impossible transition. For instance, in case of impossible transition

of PCI reset bit to “reset” the PCI reset will appear to be impossible even if all other signals are sent to

reset.

8.2.3.8.3 Intrinsic mechanisms

No intrinsic mechanisms cover the preceding failure modes.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 122 Réf. CCC/13/001303 – rev. 05

8.2.3.9 Debug interface

8.2.3.9.1 Description

Debug interface allows deep diagnosis of the bridge in development, testing, integration and maintenance

of the overall equipment. On a bridge, debug interface features cannot be used as particular diagnostic

feature in operation. It is thus considered that debug interface has no interaction with safety related

behaviours.

8.2.3.9.2 Failure modes

Not applicable

8.2.3.9.3 Intrinsic mechanisms

Not applicable

8.2.4 Concluding remarks

It is noticeable that a bridge can develop the complete panel of failure modes and does not seem to contain

any internal detection / mitigation mechanisms. Indeed all the failures described on bridge blocks results in

failures on PCI or PCIe messages listed in chapter 7. Bridge will rely on pure architectural mechanisms in

order to detect and mitigates these failures (see section 9.3.4.1, 9.3.4.2, 9.3.4.3 and Erreur ! Source du

renvoi introuvable.).

8.3 ARINC 429 INTERFACE DRIVERS

8.3.1 Introduction and available data

Several types of A429 interfaces driver are available with different level of complexity. Among them are of

particular interest:

 The HOLT HI-3585/3586,

 The DDC DD-00429.

Each of these interface drivers is described by a datasheet. Use of A429 standard is also of interest.

Document name Document description Examples

Datasheet Datasheet present the main features and

characteristics of the DDR memory :

 Functional description,

 Functional block diagram and

state diagram,

 Electrical specification

 Mechanical specification

 Thermal characteristics

 Etc.

HOLT HI-3585/3586 [37]

DDC-00429 [38] and DDC-42900

[39]

Standard ARINC 429 standard [40]

Table 8: A429 driver list of reference documents

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 123 Réf. CCC/13/001303 – rev. 05

8.3.2 Architecture description

The basic function of ARINC 429 driver is to receive or transmit (or both) and to convert received

information into typical format found on boards: SPI, PCI, local bus, etc.

In this sense the driver can be considered as a bridge. As ARINC 429 is very prescriptive (many

information carried by the frame are prescript by the protocol) the driver may implement protocol

verifications.

Due to the ARINC 429 bandwidth (bus frequency from 12.5kHz to 100kHz) and the few interfaced buses

on COTS components (less than eight), either SPI bus or low end parallel local bus are selected for

processing core connection to cope with a few megabit per second bandwidth.

The issue for the COTS manufacturer is more a small component package issue and the need to mix in a

same device analogue (differential +/-10V with common mode and lightning strike residual high voltage

expectations) and digital (3.3V to 5V range) parts.

HOLT HI-3585/3586 Datasheet [37] proposes the following block diagram (Figure 69).

Figure 69: HOLT HI-3585/3586 block diagram;

The interface of the HI-3585 driver with the external world is performed by a SPI bus (on the left side of

Figure 69). The transmission levels are on the top part of the diagram and the receiving level on the bottom

part. HI-3585 ensures minimum check features on the words.

DD-00429 datasheet [38] proposes the block diagram depicted on Figure 70.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 124 Réf. CCC/13/001303 – rev. 05

Figure 70 : DD-00429 ASIC with external analogue adaptors block diagram;

This A429 driver appear to be more complex than HI-3585. It communicates with the CPU on a local bus

(bottom-right of Figure 70) and has several lines in emission and reception (left part of the diagram) .

The conformity of received frames is realized by a controller as well as the storage of received frames .

In order to study a typical A429 driver a generic model is proposed on Figure 71.

Figure 71 : Generic block diagram of A429 driver;

List of ARINC 429 COTS provided features:

 By Control Register:

o Device configuration (external input clock, ARINC bit-mapping on SPI bus, master reset,

test loopback mode…);

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 125 Réf. CCC/13/001303 – rev. 05

o Receive lines configuration (speed, label to store, parity check);

o Transmit lines configuration (speed, parity generator);

 By ARINC 429 receiver:

o Optional Analog to Digital receive adaptation;

o Receive checks (gap size, bit rate, parity, label to store);

o Label filtering

o Label storage address computing (unless a by default FIFO protocol is implemented that

let software to cope with this function)

o Receive data storage;

 By ARINC 429 transmitter:

o Transmit data storage;

o Scheduling of the transmission (bit rate, parity bit, …);

o Optional Digital to Analogue transmit adaptation ;

 By Bus connection:

o Management of the SPI slave bus interface or of the parallel local bus interface to host

processor while outing interruption signal;

o Access to the control register:

 Device configuration (external input clock, ARINC bit-mapping on SPI bus, master

reset, test loopback mode…);

 Receive lines configuration (speed, label to store, parity check);

 Transmit lines configuration (speed, parity generator;

o Access to the status register;

 By Test Loopback:

o The transmitter’s digital outputs are internally connected to the receiver digital inputs.

8.3.3 Failure modes

The following main streams have to be considered when discussing about ARINC 429 communication

failures:

 Receive data stream: Stream from the ARINC 429 receiver bus to the COTS local bus connection

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 126 Réf. CCC/13/001303 – rev. 05

 Transmit data stream: Stream from the COTS local bus connection to the ARINC 429 transmitter bus

The streams from/to the COTS local bus to the control register / from the status register are enablers for the

ARINC 429 communication and can also affect the two main communication streams.

A last stream exists in the component: COTS internal test loopback connection can be established between

the digital parts of ARINC 429 transmitter and emitter.

Most of the ARINC 429 COTS propose this embedded Test Loopback from the digital transmit part to the

digital receive part. While enabling to check most of digital buried blocks during a scheduled test phase,

this mechanism, if failed or active during operational mode, can induce combined failures on both transmit

and receive blocks, independently of any local bus access.

Each of the failure modes of the subchapter 6.3 are declined on messages that come from (outgoing

message) or that go to (incoming message) more buried blocks compared to ARINC 429 COTS.

8.3.3.1 Loss of message

Receive data stream

In case of failure of the ARINC 429 analogue to digital conversion, a loss of message will be more

likely experienced at received data memory level as it seems not foreseeable to have voltages

erroneous detection while maintaining respect to the bit rate timings due to the intrinsic failure

mitigation incorporated in the ARINC 429 physical and logical layers.

In case of COTS external clock loss, loss of message will be experienced as the COTS is no more

able to sample the incoming message.

Transmit data stream

In case of failure of the ARINC 429 digital to analogue conversion, a loss of message will be more

likely experienced as it seems not foreseeable to have erroneous voltage levels while maintaining

respect to the bit rate timings.

In case of COTS external clock loss, loss of message will be experienced as the COTS is no more

able to schedule the outgoing message.

8.3.3.2 Untimely transfer of messages

Receive data stream

In case of an erroneous configuration (e.g. with not intended labels to catch), a receiver FIFO like

memory can be saturated with data of unintended labels. This can lead to modify the received

sequence of messages with intended labels to catch, even with message loss.

Transmit data stream

In case of an erroneous management of the transmit FIFO memory, a collection of messages can be

emitted continuously without refresh of the data (i.e. babbling).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 127 Réf. CCC/13/001303 – rev. 05

8.3.3.3 Abnormal sequence of message

Receive data stream

This failure mode can occurs when data are stored in some buffer or memory before read through

the local bus. It is in particular the case when the FIFO management counters are corrupted in

ARINC 429 queuing receive mode (where a same label is used for a data collection, it’s the receive

order of the data that give sense to the data collection extracted from the messages).

Transmit data stream

This failure mode can occurs when data are stored in some buffer or memory before write on the

transmit line. It is in particular the case when the FIFO management counters are corrupted in

ARINC 429 queuing transmit mode (where a same label is used for a data collection, it’s the

transmit order of the data that give sense to the data collection extracted from the messages). A

collection of messages can be emitted with a not consistent age between messages or with missing

messages in the collection.

8.3.3.4 Untimely or forbidden transition of information

Receive data stream

This topic corresponds to the transition to a wrong value of data or label values.

In case of COTS with multiple receive lanes; a failure can occur that wraps the labels to catch from

one lane to the others. If the COTS uses the label and lane rank to store the data in an RAM, this

case will can be particularized in “impersonation”.

A simpler case is a corruption of a receive memory cell.

Transmit data stream

This topic corresponds to the transition to a wrong value of data or label values.

In case of COTS with multiple transmit lanes; a failure can occur that wraps the messages to

transmit from one lane to the others. If the COTS uses the label and lane rank to store the data in an

RAM, this case will can be particularized in “impersonation”.

A simpler case is a corruption of a transmit memory cell.

8.3.3.5 Impossible transition of information

Receive data stream

In case of loss of addressing capability on the local bus, all read accesses will return the same

dummy data on the bus.

Transmit data stream

In case of loss of addressing capability on the local bus to the transmit memory, all write accesses

will be non-effective and a dummy data stuck in the memory.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 128 Réf. CCC/13/001303 – rev. 05

8.3.4 Failure Detection & Mitigation

Failure detections and mitigations are those of the ARINC 429 physical and data-link layers.

8.3.5 Concluding remarks

Errors in ARINC 429 interface driver design results either in failures on the ARINC 429 messages (see

section 7.4) and/or failures on local communication bus (for instance SPI) with the other architecture

building block (in general a microprocessor). These errors are partly covered by the ARINC 429 detection

and mitigation means and by architectural mechanisms such as output monitoring (subsection 9.3.4.1.3).

8.4 MIL-STD-1553 INTERFACE DRIVERS

8.4.1 Introduction and available data

MIL-STD-1553 interfaces drivers are described in a Datasheet that describes the architecture, features,

electrical connexion and environmental constraints data. Table 9 lists the reference documents of interest in

order to perform the study of the component.

Document name Document description Examples

Product Brief Product brief introduce to the features

covered by the COTS.

PCI-Express AceXtreme® Product

Brief [21]

Datasheet Datasheet present the main features and

characteristics of the DDR memory :

 Functional description,

 Functional block diagram and

state diagram,

 Electrical specification

 Mechanical specification

 Thermal characteristics

 Etc.

PCI-Express AceXtreme® Datasheet

[41]

Standard Standard MIL-STD-1553B notice 4, [19]

Table 9: MIL-STD-1553 drivers, list of reference documents

8.4.2 Architecture description

Figure 72 presents the block diagram of DDC AceXtrem MIL-STD-1553 driver.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 129 Réf. CCC/13/001303 – rev. 05

Figure 72: DDC AceXtreme block diagram from [41].

This block diagram shows the two redundant lines on the top right coupled with dual transceiver and

Manchester encoder/decoder, to a protocol monitor and to a local bus. The PCIe I/O is realized through a

bridge PCI-PCIe. An equivalent model is presented on Figure 73 (a) (transceivers have been decoupled).

Even if this COTS covers a larger perimeter than the connection of MIL-STD-1553 interface to a parallel

local bus, extra blocks is excluded from the studies of following paragraphs.

The resulting studied model for a MIL-STD-1553 driver is given on Figure 73 (b).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 130 Réf. CCC/13/001303 – rev. 05

Figure 73: MIL-STD-1553 Driver Block diagram

List of MIL-STD-1553 COTS functions of interest:

 Device configuration (MIL-STD-1553 mode selection, …)

 Analogue to digital and digital to analogue adaptations

 Manchester encoding/decoding layers

 1553 protocol layers, in line with mode selection and Remote Terminal address

 Transmit lines configuration (speed, parity generator)

 Management of the internal Random Access Memory

 Management of the local bus connection

8.4.3 Failure modes

The following main streams have to be considered when discussing about MIL STD 1553 communication

failures:

 Channel A receive/transmit data stream: Stream from the Channel A bus to the shared RAM

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 131 Réf. CCC/13/001303 – rev. 05

 Channel B receive/transmit data stream: Stream from the Channel B bus to the shared RAM

 COTS local bus from/to shared RAM data stream: all the MIL-STD-1553 incoming/outgoing

communication stream of both A and B channels flows through the shared RAM to be read/write by a

processing core while accessing to the COTS local bus data flow

The streams from/to the COTS local bus to the control register / from the status register are enablers for the

MIL-STD-1553 communication and can also affect the three main communication streams.

A last stream exists in the component: a COTS external port allows access to 5 hardwired programming

pins with one parity protection bit and so to COTS Remote Terminal address on the MIL-STD-1553 bus.

Most of the failures modes seen on ARINC 429 COTS can be experienced on MIL-STD-1553 COTS and

the analysis focuses on MIL-STD-1553 specific failures modes.

Each of the failure modes of the subchapter 6.3 is declined on messages that come from (outgoing

message) or that go to (incoming message) more buried blocks compared to MIL-STD-1553 COTS and

that ensure responsibilities in higher layers.

As for all memory structures, most of the following failures can be experienced.

8.4.3.1 Loss of message

Channel X receive/transmit data stream

Most likely failure of the MIL-STD-1553 analogue to digital or digital to analogue layers will lead

to a loss of message due to the intrinsic robustness of the MIL-STD-1553 logical and physical

layers.

COTS local bus from/to shared RAM data stream

Erroneous management of receive buffers that are erroneously overwritten.

8.4.3.2 Untimely transfer of messages

Channel X receive/transmit data stream

In case of corruption of its local RT address, the RT can respond to a BC command addressed to the

corrupted RT address and untimely transfer of messages (i.e. impersonation). If no other RT shares

the corrupted RT address, the MIL-STD-1553 communication will be effective. If another RT

shares the corrupted RT address, a collision will most likely happen between the two RTs. The

intrinsic robustness of the communication layer will lead to response interruption after collision

detection.

COTS local bus from/to shared RAM data stream

Erroneous management of receive buffers that are erroneously partially corrupted.

8.4.3.3 Abnormal sequence of message

Channel X receive/transmit data stream

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 132 Réf. CCC/13/001303 – rev. 05

This failure mode can occur when data are stored in some buffers of the shared RAM and the

management of the buffers experienced failures. Data buffers can be routed either to a bad channel,

or as a response to a bad command.

COTS local bus from/to shared RAM data stream

Erroneous management of a receive buffers in case of messages queuing that does not respect the

messages ordering.

8.4.3.4 Untimely or forbidden transition of information

Channel X receive/transmit data stream:

The simple corruption of a shared RAM cell can lead to such a failure mode.

COTS local bus from/to shared RAM data stream

The simple corruption of a shared RAM cell can lead to such a failure mode.

8.4.3.5 Impossible transition of information

Channel X receive/transmit data stream

In case of inadvertent switching from Bus Controller mode to either Remote Terminal or Bus

Monitor modes, as the unique BC of the bus disappears, transition of information on the bus

becomes impossible. Both channels will experience this failure in case of configuration failure and

so the channels redundancy will become ineffective.

COTS local bus from/to shared RAM data stream

In case of loss of addressing capability on the local bus to the shared memory, all read or write

accesses will be non-effective and a dummy data stuck in the memory.

8.4.4 Intrinsic robustness of the physical layer and failure mitigation mechanisms

Intrinsic robustness of the physical layer and failure mitigation mechanisms are those of MIL-STD-1553

physical, data link and network layers (sections 7.5.3 and 7.5.4)

8.4.5 Concluding remarks

Errors in MIL-STD-1553 interface driver design results either in failures on the MIL-STD-1553 messages

(see section 7.5) and/or failures on local communication bus (for instance PCIe) with the other architecture

building block (in general a microprocessor). These errors are partly covered by the MIL-STD-1553

detection and mitigation means and by architectural mechanisms such as output monitoring

(subsection 9.3.4.1.4).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 133 Réf. CCC/13/001303 – rev. 05

8.5 DDRX SDRAM MEMORIES

8.5.1 Introduction and available data

Memory chip and DDRx SDRAM in particular are principally described by a datasheet that covers the

architecture, features, electrical connexion and environmental constraints data. It appears also important to

use the JEDEC related standard that is considered as customer background knowledge by the manufacturer.

In the following paragraph we consider a typical DDR3 memory from Micron manufacturer.

Document name Document description Examples

Datasheet Datasheet present the main features and

characteristics of the DDR memory :

 Functional description,

 Functional block diagram and

state diagram,

 Electrical specification

 Mechanical specification

 Thermal characteristics

 Etc.

Micron MT41J type DDR3 SDRAM

datasheet [42]

Standard JEDEC Standard associated with the

memory used can be obtained freely under

licence agreement on JEDEC solid state

technology association
44

.

DDR3 SDRAM Standard JESD79-

3F [43]

Table 10: list of input in order to analyse a DDR memory;

8.5.2 Architecture description

JEDEC DDR3 standard [43] provides a state diagram that described the complete behaviour of the chip.

This state diagram is reproduced in [42] associated with few block diagram (for different DDR3

references)
45

. These block diagram have all the same structure reported in the background of Figure 74.

44 The JEDEC web site is accessible under http://www.jedec.org/
45 Note that older versions of JEDEC DDRx standards contained a very similar functional block diagram “intended to
facilitate user understanding”.

http://www.jedec.org/

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 134 Réf. CCC/13/001303 – rev. 05

Figure 74: Internal architecture of a DDRx SDRAM (from [42]).

An abstraction level between the one proposed on Figure 9 of chapter 5 “state of the art” and the previous

one is sufficient for our analysis. It proposes to split the DDR in three blocks as depicted on the foreground

of Figure 74 and presented on Figure 75 here below.

Figure 75: Simplified architecture of DDR SDRAM

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 135 Réf. CCC/13/001303 – rev. 05

The main messages used are summarize on Table 11

Flow name on

Figure 75

Block Corresponding

flows on Figure

74

Description from [42] and [43]

ODT Board OR

Control and

addressing

block

ODT On Die Termination: ODT enables

termination resistance internal to the DDR3

SDRAM.

Addresses DDR Controller

(in context)

A[13:0]

BA[2:0]

Controls,

Commands

DDR Controller

(in context)

WE#, CAS#,

RAS#, CS#,

Reset#,

CKE, ZQ, A12

WE#, CAS#, RAS# with the Chip Select CS#

are command information for the memory.

Reset# command the memory reset

CKE is a Clock enable signal. It command the

self-refresh operation of the DDR

ZQ command the calibration mode

CK, CK# DDR Controller

(in context)

CK,CK#

BC# Control and

addressing

block

BC4 BC# (burst chop) transmit a burst command

that reduce the burst elementary packet.

Bank, Row,

Column addresses

Control and

addressing

block

Row address

Column address

counter

Bank Control

Transfer to the data storage block the

addresses of the data to be read or the address

were data have to be written.

Defines to which bank an Active, Read, Write,

or Precharge command is being applied.

Read Data Data Storage

Block

Internal DDR

flow not named

Transfer of read data from Data storage block

to Data transfer interface

Written Data Data Transfer

Interface

Internal DDR

flow not named

Transfer of written data from Data transfer

interface to Data storage block

Data In/out Data Transfer

Interface OR

DDR Controller

(in context)

DQ

DQS, DQS#

DQ: Data Input/ Output: Bi-directional data

bus.

DQS, DQS# (Data Strobe): output with read

data, input with write data. Edge-aligned with

read data, centred in write data.

The data strobes DQS are paired with

differential signals DQS# to provide

differential pair signalling to the system during

reads and writes. DDR3 SDRAM supports

differential data strobe only and does not

support single-ended.

Input Data

Mask

DDR Controller

(in context)

DM During a Write access, input data is masked

when DM is active coincident with that input

data.

Table 11: DDR3 Blocks I/O;

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 136 Réf. CCC/13/001303 – rev. 05

In order to precise the failure modes and the corresponding behaviour of the blocks of Figure 75, the global

behaviour of the memory should be described. In [42] and [43] a state diagram is provided.

Figure 76 : DDR3 state diagram (from [42] and [43]). Principal zones have been highlighted.

On state diagram of Figure 76 the following groups of states appear:

 Initialization : states that are crossed during power on of reset sequence;

 Refresh mode: data refreshing process systematic for a SDRAM (see section 5.3.2.2); this

refreshing process can be forced by the controller or periodically realized by the memory itself.

Period decrease at temperature higher that 85°C;

 Activation: preparation of a reading or of a writing by pre-charging data in some buffer. Activation

is triggered by memory controller order;

 Reading and Writing operations where memory push data to the controller or where controller push

data to memory;

 Precharging: in order to be ready for next command memory.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 137 Réf. CCC/13/001303 – rev. 05

8.5.3 Block study

8.5.3.1 Control and Addressing Block

8.5.3.1.1 Description

This block mainly received the registration command from DDR controller that allows the activation of the

memory. This registration is followed by commands that specify if the operation will be reading or writing.

When a reading operation is accepted by the memory this block received the address (Bank Address: BA

and Row Address in the Bank: A) of the first row to be transferred. Transferred is realised by burst starting

from this address while some controls stop it.

In order to ensure these functions, this block contains Mode Registers that configure the command and

control applied.

8.5.3.1.2 Failure modes

8.5.3.1.2.1 Loss of message

The triggering of memory activation realized by the block is performed by discrete I/O so that it cannot be

lost but misinterpreted. It is covered in paragraphs “untimely or forbidden transition of information” and

“Impossible transition of information”.

On the other hand, the banks, rows and columns addresses settled in output of this bloc to select the starting

point of the burst can, due to some error, encounter a transition to a value that do not correspond to a valid

address. In this case the address selection could be considered as lost. It will result at memory level an

impossible realisation of read or write operation so that address transferred can be considered as lost (lower

branch of Figure 77).

Figure 77: Some possible failure of addressing operation. The incorrect valid address case is treated in
forthcoming paragraphs.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 138 Réf. CCC/13/001303 – rev. 05

8.5.3.1.2.2 Untimely transfer of message

As in the previous paragraph, the binary nature of most of the signals make this failure mode non

applicable.

In the case of addresses, it is possible to consider that this block untimely transfer address to the Data

Storage Block so that the complete memory can never be considered in idle state. It could result of such

behaviour that refresh cannot be trigger and that data could be lost.

8.5.3.1.2.3 Abnormal sequence of messages

Addresses are sent in parallel, each activating a bank, a column or a row. No ordering in address sequences

seems to have an impact except if the bank address signal goes to 0 before acknowledgment of column and

row address. This case could be more considered as an untimely transition of bank address to 0.

8.5.3.1.2.4 Untimely or forbidden transition of information

Due to the function it ensures and to its configuration, this block could make some command, controls or

addresses transiting to wrong value. Such untimely transition could have different impact on other blocks

and on the global memory behaviour. In particular, if command and control that govern the transition to

active state suffer an untimely transition to active, it is possible that idle state could not be reach for a long

time and that some refresh operation could not occur.

An untimely transition of address to a valid but incorrect address will make the reading or writing burst

starting at the wrong address (upper branch of Figure 77). It may result of such a behaviour untimely

transition of data sent to the processor to incorrect value and then wrong computation.

A forbidden transition of address to an incorrect address will cause the impossibility to write or read data.

The choice realised on Figure 74 and Figure 75 attached the On Die Termination (ODT) management to

this block. It appears that, due to the low voltage level involved in DDR3 transfer, an error that could

influence the ODT impedance so that ODT signal untimely changed could cause loss of data.

8.5.3.1.2.5 Impossible transition of information

Errors described in the case of “untimely or forbidden transition of information” could cause also

impossible transition failure such as:

 Command or control that activates the memory for next transfer could suffer an impossible

transition to activation. This could cause loss of data in write or read operation;

 Control that stops the burst transfer could also suffer an impossible transition to stop value so that

burst could continue. Generating an abnormal occupation of the memory controller and possible

loss of other data.

8.5.3.1.3 Failure mitigations

See paragraph 8.5.4.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 139 Réf. CCC/13/001303 – rev. 05

8.5.3.2 Data Storage Block

8.5.3.2.1 Description

Data storage block is made up of several banks of memories organized in column and rows. In order to

access to right column and row in some bank, the block contains some logic that control the access to these

elements on the basis of addresses received from Control and Addressing Block.

Figure 78: Data storage block substructure (from [42]).

This block is responsible

 In read mode: of the delivery of some data burst on the request of the Control and Addressing Block

and with the starting address it received from this block;

 In write mode: of the storage of some data burst on the request of the Control and Addressing Block

and with the starting address it received from this block.

8.5.3.2.2 Failure modes

8.5.3.2.2.1 Loss of message

A burst can be lost during its extraction from the bank. This may cause loss of data at memory level.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 140 Réf. CCC/13/001303 – rev. 05

A burst can be lost during its storage in the bank. This may cause, when corresponding zone will be read,

the reading of aberrant data and thus the transition to valid erroneous data or to invalid data at processor

level.

8.5.3.2.2.2 Untimely transfer of message

It could occur that this block untimely transfer data to the data transfer interface.

8.5.3.2.2.3 Abnormal sequence of messages

It could occur that the block mixes the burst so that some rows are not read or write in the right order. Such

a failure would cause data stored or delivered to be wrong.

8.5.3.2.2.4 Untimely or forbidden transition of information

It could occur that the block corrupt some data, during the time it is stored or during storage or extraction

operations, so that this data suffer an untimely transition to an incorrect valid value. We consider that the

forbidden is not realized as a bit as always a value (0 or 1). So no transition to an invalid value can occur.

The first case would be the worst because it would lead to the usage of incorrect but valid data by the

processor.

8.5.3.2.2.5 Impossible transition of information

The arbitrary separation of blocks of Figure 52 and Figure 53 led to situate the FIFOs in the Data Transfer

Interface block. A behaviour that could stick a data at the same value is thus considered as unlikely to

occur in the current block.

8.5.3.2.3 Failure mitigations

See paragraph 8.5.4.

8.5.3.3 Data Transfer Interface

8.5.3.3.1 Description

Data transfer interface block has two functions: firstly, it transfers the read data from Data Storage Block to

DDR controller. Reversely, it transfers the written data from DDR controller to Data Storage Block.

This block, represented on Figure 79, concentrates the particularities of the DDR in general and of the

DDR3 in particular:

 The clocks CK and CK# control the read and write operation and allows the double data rate;

 The prefetch buffers (2n for DDR, 4n for DDR2, 8n for DDR3) that allows “prepare” xn

adjacent words for transfer.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 141 Réf. CCC/13/001303 – rev. 05

Figure 79: Data transfer interface block substructure (from [42]).

8.5.3.3.2 Failure modes

8.5.3.3.2.1 Loss of message

Loss of message (loss of some data in a burst) is an admissible mode of this Block. This could arrive for

instance in case of prefetch buffer error, clock error or in the case of a write operation in case of untimely

activation of DM signal.

8.5.3.3.2.2 Untimely transfer of message

It could be envisaged unless improbable that words stored in a buffer are untimely released. This should

have not effects as either in read and write operation the receiver of the untimely transaction should not be

ready to receive it.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 142 Réf. CCC/13/001303 – rev. 05

8.5.3.3.2.3 Abnormal sequence of messages

It seems very improbable that two parts of a burst are sent in an abnormal sequence.

Another abnormal sequence could arrive in case of collision between a "read" and a "write" burst. Such a

collision should be avoided by the DDR controller, however in case of a delayed read operation in this

block it could be imagine unless improbable that a write operation interferes with it. Such a delay of read

operation could occur in case of transient error of the DLL that clocks the read drivers (Figure 79).

8.5.3.3.2.4 Untimely or forbidden transition of information

An untimely transition of information could rise during a burst transfer, in a buffer, even it is more current

in the memory banks themselves (see paragraph 8.5.3.2).

8.5.3.3.2.5 Impossible transition of information

An impossible transition of information (bit stuck at some value) could occur in this block.

8.5.3.3.3 Failure mitigations

See paragraph 8.5.4.

8.5.4 Failure Detection & Mitigation

No failure mitigation is encountered at individual memory level.

8.5.5 Concluding remarks

Errors in DDRx SDRAM memories design result in failures on data provided to the microprocessor.

The DDRx chip in itself does not embed any local detection and mitigation mechanisms.

However, all electronic Memories are sensible to external aggression like atmospheric perturbation SEU or

MBU that can change their content. This is why it is necessary to embed in DDR controllers, mechanisms

able to detect such errors in particular in Avionic or Space environments. These mechanisms cover by the

way most of the modes envisaged in the preceding paragraphs.

The two types of mechanisms implemented on memories are:

 Parity Checking,

 Error Code Corrector.

As already outlined theses mechanisms are not implemented on the memory chip but on an ensemble of

memory chip driven by a DDR controller. They are described in chapter 9 with some others that may be

implemented on memories (CRC, data mirroring).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 143 Réf. CCC/13/001303 – rev. 05

8.6 FLASH MEMORIES

8.6.1 Introduction and available data

As outlined in section 5.3.3, NAND flashes are of particular interest due to their complexity. Consequently

examples considered in this section are of this type.

NAND flash Memory chip are principally described by a datasheet that covers the architecture, features,

electrical connexion and environmental constraints data.

In the following paragraph we consider typical NAND flash memory and NAND flash card, which

structures are deduced from several sources.

Document name Document description Examples

Datasheet Datasheet for NAND Flash controllers GreenLiant GLS55VD031: [44],

GreenLiant GLS55VD020 [45]

Lattice Semiconductor: RD1055

[46]

QuickLogic [47]

Datasheet Datasheet for NAND Flash card Spansion [48]

Application Notes Spansion [49]

Table 12: list of input in order to analyse a NAND Flash memory;

8.6.2 Architecture description

High capacity NAND Flash can be built by connecting in a same component several NAND Flash memory

stacked dies like those represented on Figure 80.

Most of the considered NAND Flash devices rely on the Open NAND Flash Interface (ONFI) Specification

for defining the host system interface.

An ONFI (Open NAND Flash Interface) command “Read Parameter Page” allows the host to access to

standardized parameter fields that describe useful characteristics of the NAND Flash devices. The host

takes advantage of the parameters read to adjust through its embedded firmware the fine management of

the NAND Flash devices.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 144 Réf. CCC/13/001303 – rev. 05

Figure 80 : Structure of a NAND Flash component

At this extend, solid-state drive appear as host subsystems (Figure 81).

Figure 81 : Memory card structure

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 145 Réf. CCC/13/001303 – rev. 05

The sub-system embeds one of several NAND Flash dies and accesses to them through an interface (ONFI

specification can be used).

On the other side an interface is proposed to the Host system, like:

 Buses: ATA, IDE, USB,

 Standardized interfaces: SD Memory Card, Multimedia Card…

SRAM Buffers are used to store data temporarily and give the necessary flexibility to adapt format of

incoming and outgoing data streams.

Due to the admitted failures in the NAND Flash memory arrays, an ECC mechanism is required on the

internal memory card bus (by the NAND Flash memory datasheet to ensure integrity performances). To

ensure high transfer speed performances, DMA mechanism is embedded.

To provide functional higher level services, a Micro-Controller Unit is embedded in the sub-system.

The following functions are proposed and managed through the embedded firmware:

 Bad Block Management (the defective blocks identified during NAND Flash memory

manufacturing are identified at sub-system level and their list managed to ensure integrity of the

stored data),

 Wear levelling: the number of accesses to the NAND Flash memory has an impact on the stored

data integrity and on the response time, so the firmware will manage the long lasting time and the

number of block erase, the number of block write and even the number of read (read disturb) to

provide the best service in term of integrity and longevity,

 Adaptation of the transferred data packets from/to the host system file to/from the NAND Flash

memory block structures, with the maximum efficiency by using the proposed DMA mechanism,

 Security application can be hosted too to protect unauthorized access to stored data with key data

encryption (e.g. standard ATA Security Mode feature set, Content Protection for Recordable Media

copyright protection on SD Card, …)

A Power Management Unit controls the power consumption of the memory card subsystem and NAND

Flash interface to avoid operation at risk on NAND Flash data, in particular during power transitions. The

sub-system must be able to boot and recall data after unexpected power failures interrupt flash operations

and controller built in power fault tolerance is expected.

8.6.3 Failure modes

8.6.3.1 Loss of message

In case of failure in the command interface logic, the data operation will not be effective and the data can

be lost.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 146 Réf. CCC/13/001303 – rev. 05

8.6.3.2 Untimely transfer of messages

In case of failure in the command interface logic, an erroneous data operation can be performed and non-

requested data can be proposed at the interface level.

8.6.3.3 Abnormal sequence of message

In case of corruption of the Read Parameter Page, the commands addressed to the Flash devices will not

have a comprehensive sense and the realized sequence will be abnormal.

8.6.3.4 Untimely or forbidden transition of information

If the last program operation was interrupted before completion by power interrupt, even with a data

verified correctly at the time of interruption, the page’s data retention time will not reach its full potential.

This will lead to un-correctable bit failures when the page is accessed later.

8.6.3.5 Impossible transition of information

In case of erroneous access to manufacture identified Bad Blocks, the data will not be stored in the NAND

Flash memory.

8.6.4 Intrinsic robustness

No intrinsic robustness identified

8.6.5 Intrinsic failure mitigation mechanisms

The Read Parameter Page command can be considered as an embedded failure mitigation mechanism as it

gives access to user on the warranted performances of the installed NAND Flash device. By using and

checking this usage domain, the user will be able to monitor the component behaviour.

The embedded standardized identification of manufacture identified defective blocks is another means to

help for failure mitigation.

NAND flash embeds an ECC realized by a hardware accelerator in order to correct the sector failures so

that untimely or forbidden transition of data or impossible transition of data (address remained correct) are

detected and corrected
46

. Critical data should be protected by complementary mechanisms directly by

applicative command or by services offered by OS: e.g. CRC, Check sum or double copy of data in two

different zones with complement to 1. Correspond to end to end between core and memory. These

mechanisms are detailed in section Erreur ! Source du renvoi introuvable..

8.6.6 Concluding remarks

Errors in Flash memories design results in failures on data stored and delivered. The mechanisms

embedded on memory cards are not dedicated to cover design errors but manufacturing process dispersion

46 The number of error detected and the number of error corrected depend upon the ECC implemented.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 147 Réf. CCC/13/001303 – rev. 05

and wearing. By the way they can cover such errors but could then be less efficient in the completion of

their prime function. It seems preferable to test memory cards and to monitor (when possible) the

triggering of embedded detection mechanism during the test (see subchapter 9.2) in order to guarantee the

reliability of their design than relying on embedded mechanisms in order to guarantee the integrity and

availability of their outputs. These embedded mechanisms should then be considered as complementary

mechanisms for design errors and should be complemented by architectural mechanisms.

8.7 MICROCONTROLLERS

8.7.1 Introduction and available data

Microcontroller evolution has been described in section 5.3.4. This chapter considers Freescale

microcontroller like for instance MPC8610 initially designed for embedded applications that process or

display graphical images, such as robotics, in-vehicle infotainment, cockpit displays, single-board

computers and multi-function printers and scanners.

This microprocessor implements the following features:

 e600 core built on Power Architecture technology with 256 KB backside L2 cache with ECC and

integrated vector processing engine to accelerate image recognition and encoding/decoding (AltiVec
®
);

 DDR/DDR2 SDRAM memory controller with ECC (up to 533 MHz);

 Integrated display controller;

 Two PCI Express® Interfaces, one with 1x/2x/4x/8x lanes for connecting graphics processors;

 PCI 2.2 Interface at 32-bits and 66 MHz;

 Two four-channel DMA controllers;

 Enhanced local bus with 32-bit multiplexed address/data for ROM, NAND or NOR flash;

 I²S or AC97 audio inputs/outputs;

 Two fast/serial infrared interfaces (FIRI/SIRI);

 Serial peripheral interface (SPI);

 Two dual universal asynchronous receiver/transmitters (DUARTs);

 Two I²C controllers;

 Up to 32 general-purpose input/output (GPIO) ports.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 148 Réf. CCC/13/001303 – rev. 05

The basic documents available for the study of a microcontroller are listed in Table 13.

Document name Document description Examples

Product Fact sheet Provides an overview of the microcontroller

features as well as application use cases.

MPC8610 Fact sheet [50]

Datasheet Includes all the hardware design related

information as power supply specification

timings, thermal environment.

MPC8610 Integrated Host Processor

Hardware Specifications [51]

Reference Manual Describes the features and operation of the

microcontroller

MPC8610 Integrated Host Processor

Reference Manual [52]

Core Reference

Manual

Describes the features of the core E600 Reference Manual [53]

Errata list Details all known silicon errata on the

component.

MPC 8610 Errata Sheet [54]

Application notes Some application notes are emitted by the

manufacturer in order to configure or use

correctly the device. Often these application

notes complement and particularise the

reference manual and eliminate some

ambiguities.

Table 13: microcontroller list of reference documents

Some other sources may be available

- White papers, Publication and patents [55] emitted by the manufacturer have not the official

character of a Reference Manual but can help to have an overview on a particular topic and

help to ask relevant questions to the COTS manufacturer;

- Due to the complexity of the microprocessor and of its documentation (several thousands of

pages) some training are proposed by the manufacturer and by affiliate consultants. These

training cannot be considered as elements of proof but they can help a lot in the overall

understanding of the COTS functioning;

- Data under No Disclosure Agreement are in general requested from the component

manufacturer in order to improve and confirm the relevance of the functional description

and of the failure behaviour.

8.7.2 Architecture description

The MPC8610 architectural description given in the open documentation is reported on Figure 82.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 149 Réf. CCC/13/001303 – rev. 05

Figure 82 : MPC8610 block diagram from [52].

This block diagram exhibit the features already listed. It is important to note that this microcontroller is

architected around a bus (MPX bus) with an arbiter (MPX Coherency Module – MCM). This

Microcontroller is thus of the type described on Figure 13. Microcontroller architecture around

interconnect is detailed in next subchapter.

8.7.3 Block study

8.7.3.1 Core

8.7.3.1.1 Description

MPC8610 core (e600) is described in the core reference manual [53] and in Part II of MPC8610 Reference

Manual [52]. E600 core has:

 L1 cache for instructions (32kB) and L1 cache for data (32kB);

 Mixed data and instructions L2 cache (256kB).

E600 is a 32 bits core implementing several levels of pipelining and different levels of buffer allowing

fetching instructions, facilitating branch prediction, queuing instructions, etc. (see Figure 83). Contrary to

e500mc presented on Figure 89, e600 has a module of vectorial computation based on AltiVec®

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 150 Réf. CCC/13/001303 – rev. 05

Technology. This vectorial computation capability and the MMU structure are the greatest difference with

the e500mc that will be developed on paragraph 8.8.3.1.

Figure 83: Simplified e600 block diagram focusing on instruction paths and memory type areas (clear grey zones)

– adapted from [53];

8.7.3.1.2 Failure modes

Failure modes of the core are those already listed in the section 6.3 for the interface between hardware and

software:

 No program instruction outing, for instance if instruction is lost in buffer or queue;

 Erroneous calculation outing, for instance if completion queue Figure 83 that stores results waiting

the completion of pipelined instruction is corrupted;

 Latency in program instruction outing (Maximum Execution Time drift), for instance if branch

prediction unit (Figure 83) is erroneous and in certain conditions take systematically wrong

assumption;

 Inversion of tasks, if a problem occurs in the filling of completion queue.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 151 Réf. CCC/13/001303 – rev. 05

Toward its interface with MPX bus, each core can develop the standard failure modes developed in the first

part of section 6.3 and already experienced on COTS interfaces in chapter 7.

8.7.3.1.2.1 Loss of message

Due to possible conflict in cache synchronization processes data or addresses could be lost before

their transfer to the internal bus. It is probable that such behaviour necessitate a second error in the

information transfer mechanisms.

A more probable mechanism can be generated by core interruption on core external request or on

core self-request (see following section).

8.7.3.1.2.2 Untimely transfer of message

Because of interface buffers it is possible that core emit repeatedly the same data / address set to

internal bus and occupy it or occupy the resource to which it sends this set.

8.7.3.1.2.3 Abnormal sequence of messages

Messages transfer between Cache and internal bus could develop such behaviour for instance if

cache descriptors are corrupted. The involvement of buffers between L2 caches and internal bus

cannot directly lead to these failure since they seems to be of FIFO type. However when buffers are

involved, the possibility of data output inversion in the stack because of some pointer error can be

envisaged.

8.7.3.1.2.4 Untimely or forbidden transition of information

Data and addresses can be corrupted in the core buffers or in the cache or in intermediate buffers

between cache and internal bus. Indeed e600 cores implement different level of pre and post cache

buffers (not shown on Figure 83) allowing optimisation of cache operations. Contrary to the caches,

these buffers are not protected by ECC or parity mechanisms (see paragraph 8.7.3.1.3). The effect

of such failure is identical as the Erroneous calculation outing.

8.7.3.1.2.5 Impossible transition of information

See “untimely or forbidden transition of information”

8.7.3.1.3 Failure mitigation mechanisms

E600 core is partially covered by several mechanisms:

- Parity on L1 cache,

- Parity and ECC on L2 cache,

- Memory Management Unit - see paragraph 8.8.3.1.3.3.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 152 Réf. CCC/13/001303 – rev. 05

8.7.3.1.3.1 Parity on L1 cache

From the point of view of failure mitigation mechanisms, L1 cache can be separated into:

 L1 tags for instruction,

 L1 tag for data,

 L1 queues,

 Instructions,

 Data.

Due to the relative volume occupied by each zone of L1 cache, the level of protection defined by the

manufacturer differs from zone to zone (Table 14: Mechanisms implemented on the L1 cache of e600).

Cache zone Volume Protection implemented

L1 tags for instruction 128 sets of 8 blocks of 24+1 bits None

L1 tag for data 128 sets of 8 blocks of 24+3 bits None

L1 queues 5 entries for load misses

 2 entries for instruction fetches

 2 for cacheable store requests

 2 LLQ (L1 Load Queue)

 3 LSQ (L1 Store Queue)

None

Instructions 32 KB + 1b/Word parity Parity (1b / word)

Data 32 KB + 1b/B parity Parity (1b / Byte)

Table 14: Mechanisms implemented on the L1 cache of e600;

8.7.3.1.3.2 Parity and ECC on L2 cache

L2 cache can be separated into:

 L2 tags,

 L2 data,

 L2 queues.

Different protection levels have been defined for each zone Table 15.

Cache zone Volume Protection implemented

L2 tags 512 sets of 8 blocks of 24+1(parity)+2(status) Parity

L2 data 256KB +1b/B for ECC/parity ECC + Parity (1b/B)

L2 queues Prefetch (3) ,

 L2SQ (L2 Store Queue)

- 4 entries for L1 Castouts

- 1 entry for snoop / push interventions

None

Table 15: Mechanisms implemented on the L2 cache of e600;

Protections on L1 and L2 caches should be compared to the protections implemented on e500mc on L1,

L2, TLB, PAMU caches, etc. (see paragraph 8.8.3.1.3). This shows the continuous improvement made by

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 153 Réf. CCC/13/001303 – rev. 05

component manufacturers for the protection mechanisms embedded in their devices. This is necessary due

to the increasing memory quantity embedded in a single device.

8.7.3.2 MPX bus and MPX coherency module

8.7.3.2.1 Description

The MPX Bus is a high-performance bus with separate address and data buses [56], each with its own set

of arbitration and control signals (Figure 84). This allows for the decoupling of the data tenure from the

address tenure of a transaction and provides for a wide range of system bus implementations, including:

• Non-pipelined bus operation,

• Pipelined bus operation,

• Split transaction operation.
.

Figure 84: MPX bus data and address tenure

Arbitration for both address and data bus mastership is performed by an external arbiter (located in the

MPX Coherency Module) using the address arbitration signals BR (Bus Request), and BG (Bus Grant),

ARTRY (Address Retry), DRTRY (Data Retry) and the data arbitration signal DBG (Data Bus Grant).

Most arbiter implementations require additional signals to coordinate bus master, slave, and snooping

activities.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 154 Réf. CCC/13/001303 – rev. 05

Figure 85: MPX Coherency Module

MPX bus transfers instruction as data, some of them are directly interpreted in particular in order to acts on

the caches..

8.7.3.2.2 Failure modes

8.7.3.2.2.1 Loss of message

At the interface between core and the bus (system bus interface) some buffers (load queue, Bus Store

Queue, Castout queue, push queue, can take place that could suffer a loss of transactions.

The same behaviour could be exhibited by MCM (see Figure 85).

In case of error of the bus arbiter in the MPX coherency Module, Address and data separation could cause

loss of one or both.

8.7.3.2.2.2 Untimely transfer of message

Again, because of queues and buffers, MPX could either generate untimely transfer of message with delay

and with repetition (babbling). See chapter on bridges for a detailed discussion of possible discrepancies

between buffers and queues.

8.7.3.2.2.3 Abnormal sequence of messages

Abnormal sequence of message could be generated by an error of pointer.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 155 Réf. CCC/13/001303 – rev. 05

8.7.3.2.2.4 Untimely or forbidden transition of information

Due to buffer management and to high bandwidth transfers on MPX, data can suffer from untimely

transition. Addresses can suffer of untimely transition or of forbidden transition if the new destination

address does not exist. In case of instruction transfer, untimely transition to some operations can realize

operation on the caches that could invalidate the complete application run.

8.7.3.2.2.5 Impossible transition of information

Because of buffer management impossible transition could occur.

8.7.3.2.3 Failure mitigation mechanisms

Failure mitigation mechanisms implemented by the MPX bus are the following:

o An address and a data parity signals are sent in parallel to address / data transfers.

o In address termination phase an acknowledgment is sent with a signal for completed address tenure or

retry request

o In data termination phase, an acknowledgement is requested after each beat of 8 Bytes (data

termination signal). A special data termination signals (final data beat) is sent at the end of the burst.

8.7.3.3 DDRx Controllers

8.7.3.3.1 Description

DDR2 controller is described in chapter 8 of MPC8610RM [52]. The following analysis covers also DDR3

controllers of multicore (see for instance chapter 11 of P4080RM [33]).

The MPC8610 DDR memory controllers support DDR2 SDRAM. The memory interface controls main

memory accesses. The memory controller also supports chip-select interleaving within a controller as well

as interleaving across controllers on bank, page, or cache line boundaries. The MPC8610 can be configured

to retain the currently active SDRAM page for pipelined burst accesses.

Page mode support of up to 32 simultaneously open pages can dramatically reduce access latencies for

page hits. Depending on the memory system design and timing parameters, using page mode can save 3 to

4 clock cycles from subsequent burst accesses that hit in an active page.

The following Figure 86 shows the internal block diagram to the MPC8610 DDR controller.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 156 Réf. CCC/13/001303 – rev. 05

Figure 86: DDR controller internal block diagram [52].

One can visualize on this diagram the ECC encoder and decoder and some buffers type memories (FIFO

and Delay chain) introduced in reading chain.

8.7.3.3.2 Failure modes

8.7.3.3.2.1 Loss of message

Due to its design DDR controllers can loss part of a burst in reading.

From this point of view, the transfer path in writing is more direct and loss of data on this path is

improbable.

An error in ECC encoder/decoder configuration or design could also make burst of part of burst to be

rejected and be considered as lost. This will again be effective in reading even if the error occurs during

writing.

8.7.3.3.2.2 Untimely transfer of messages

As they store information in buffer it is possible to occupy the memory interface bus with a repetition of

the same data. So, again in reading, it should be possible to imagine such behaviour. It requests an error in

the SDRAM controller of Figure 86.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 157 Réf. CCC/13/001303 – rev. 05

8.7.3.3.2.3 Abnormal sequence of messages

Due to internal arbitration on information in buffers and possible corruption of configuration registers of

DDR controllers, data can be read in memory in an abnormal sequence.

8.7.3.3.2.4 Untimely or forbidden transition of information

Data read or written can be corrupted during transfer or during manipulation by the controller.

8.7.3.3.2.5 Impossible transition of information

See “untimely or forbidden transition of information”.

8.7.3.3.3 Failure mitigation mechanisms

An ECC detects and corrects all single-bit errors and detects all double-bit errors and all errors within a

nibble (half a Byte).

Upon detection of a loss of power signal from external logic, the DDR controllers can put compliant DDR

SDRAM DIMMs into self-refresh mode, allowing systems to implement battery-backed main memory

protection.

In addition, the DDR controllers offer an initialization bypass feature for use by system designers to

prevent re-initialization of main memory during system power-on after an abnormal shutdown.

8.7.3.4 OCeaN
TM

8.7.3.4.1 Description

High-speed peripheral interfaces PCI, PCIE and SRIO, connect to a common crossbar switch referred to as

OCeaN
TM

. As mentioned within [13] information about this crossbar is difficult to obtain and in particular

reference manual is very elusive on this topic. It can be useful to consider various other sources and in

particular patents like [55].

OCeaN
TM

 is connected to

• PCIe controller

• SRIO controller

• PCI controller

• DMA on one side, and

• MPX bus on the other side.

Note that in the case of multicore (see next subchapter 8.8), OCeaN
TM

 is no longer interfaced to PCI

drivers but to more PCIe drivers and not to MPX bus but to the Microcontroller internal bus. Except this

connection differences it seems that both OCeaN
TM

 has the same design.

8.7.3.4.2 Failure modes

8.7.3.4.2.1 Loss of message

OCeaN
TM

 could contain buffer switches (as indicated in [55]). Such a structure can exhibit a loss of

message.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 158 Réf. CCC/13/001303 – rev. 05

8.7.3.4.2.2 Untimely transfer of messages

OCeaN
TM

 could contain a fabric Arbiter and a Fabric Master Controller (as indicated in [55]). Such

structures could transfer the same message repeatedly and then degrade the communication amongst the

PCI, PCIe, SRIO, DMA and MPX.

8.7.3.4.2.3 Abnormal sequence

Based on [55], OCeaN
TM

 could invert to information, due to controller error or buffer bit stuck at some

value. Deadlock avoidance mechanisms could also create such behaviour.

8.7.3.4.2.4 Untimely or forbidden transition of information

Based on [55], OCeaN
TM

 could flip information (address, data or ctrl), due to controller error or buffer bit

flip, or stuck information, due to controller error or buffer bit stuck at some value.

8.7.3.4.2.5 Impossible transition of information

Based on [55], OCeaN
TM

 could stick information, due to controller error or buffer bit stuck at some value.

This could affect data as well as addresses.

8.7.3.4.3 Failure mitigation mechanisms

 The fabric arbiter embedded in version of OCeaN
TM

 described in [55] allows a packet transfer only

if the destination can accept the packet. This could avoid, if effectively realized, a large part of the

causes for “Loss of message”. It ensures also that no deadlock situation can occur in the

simultaneous processing of two high priority tasks.

 In the case of Multicores, IOMMU (for instance PAMU), also clearly not located in OCeaN
TM

 but

in the paths between OCeaN
TM

 and CoreNet
 TM

;

 can stop major untimely or forbidden transition on address (see §8.8.3.3).

8.7.3.5 PCIe

8.7.3.5.1 Description

PCIe interface Controller is described in chapter 21 of MPC8610RM [52] and in the case of multicore in

chapter 18 of P4080RM [33].

MPC8610 has 2 PCIe ports on connected to two different OCeaN.

PCIe has been described in subchapter 7.7. It is important to appreciate the MPC8610 PCIe controllers as

the “Root complex” of Figure 44: PCIe bus topology on page 94.

Each of the PCIe Controllers is configurable as a PCIe Root Complex (see section 7.7.1) or a PCIe

endpoint.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 159 Réf. CCC/13/001303 – rev. 05

8.7.3.5.2 Failure modes

The failures modes of PCIe have been described in subchapter7.7.

Failure modes of the PCIe Controller that can disturb several PCIe output are those, described in

section 7.7.2 that are generated by high level layer (DLL or TL).

To these modes one can add loss or corruption of the configuration registers:

• Configuration as End Point or root complex:

o As an initiator, the PCI Express controller supports memory read and write operations;

o In addition, in RC mode, PCIe support configuration and I/O transactions;

o As a target interface, the PCI Express controller accepts read and writes operations to local

memory space.

o When configured as an EP device, the PCI Express controller accepts configuration

transactions to the internal PCI Express configuration registers.

o Message generation and acceptance are supported in both RC and EP modes.

o Locked transactions and inbound I/O transactions are not supported.

Corruption of this configuration does not lead to loss of the bus as it is coded on one bit and as the two

values ensure normal communication.

• SerDes Protocol determines the link width;

• SerDes clock ratio and SerDes clock divider determine the link speed

Corruption of these two configurations that can lead to a loss of the bus (change from PCIe to SRIO for

instance) or to degradation of its performances.

8.7.3.5.3 Failure mitigation mechanisms

See subchapter 7.7.

8.7.3.6 DMA

8.7.3.6.1 Description

DMA controllers are complex IP developed by chip manufacturer to reduce the charge of the processor in

memory to memory transfer. The DMA controller transfers blocks of data between the many interface and

functional modules of the chip, with limited use of resources of the cores or external hosts (for instance

PCIe when acting as master). Both the cores and external devices can initiate DMA transfers. The

considered microcontrollers implement in general 2 DMA controllers with each 4 channels. Each channel

is capable of complex data movement and advanced transaction chaining.

DMA organize input data into packets in order to transfer them optimally. The acting algorithms are

complex and may generate by themselves some delays that should be taken into account in WCET

estimation unless they are mastered.

Operations such as descriptor fetches and block transfers are initiated by each channel. A channel is

selected by the arbitration logic and information is passed to the source and destination control blocks for

processing. The source and destination blocks generate read and write requests to the address tenure

engine, which manages the DMA master port address interface. After a transaction is accepted by the

master port, control is transferred to the data tenure engine that manages the read and writes data transfers.

A channel remains active in the shared resources for the duration of the data transfer unless the allotted

bandwidth per channel is reached.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 160 Réf. CCC/13/001303 – rev. 05

Typical DMA transfers are:

o From DDRx interface to DDRx interface,

o From DDRx interface to PCI, and from PCI to DDRx interface,

o From DDRx interface to PCIe, and from PCIe to DDRx interface.

Figure 87 presents the DMA controller internal structure from [52].

Figure 87: DMA controller internal block diagram [52].

8.7.3.6.2 Failure modes

MPC8610 internal DMA controllers use physical address and bypass the monitoring of accesses performed

by the MMU. Therefore misbehaviour of the DMA due to a hardware design bug can lead to a transfer to

wrong addresses by the DMA . Use of IOMMU on multicores (e.g. PAMU on P4080) mitigates this issue.

8.7.3.6.2.1 Loss of message

Loss of transaction by a DMA can be caused by

- Loss of address, either source or destination;

- Loss of data during the transfer by the DMA.

This loss can be total or partial. It cannot be excluded a priori that a DMA executes only a part of a

transfer.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 161 Réf. CCC/13/001303 – rev. 05

8.7.3.6.2.2 Untimely transfer of message

DMA has to be considered as a transaction initiator within the micro controller. It cannot thus be excluded

that due to a design error, it initiates transactions even if they are not requested.

It is also possible to imagine that it duplicates on a third target, a transaction initiated from one target to

another. A particular error of this type should be a modification of CCSR (Configuration, Control, and

Status Registers) by a DMA erroneous transfer.

8.7.3.6.2.3 Abnormal sequence of messages

Due to multiple channel structure, DMA could invert two transactions.

8.7.3.6.2.4 Untimely or forbidden transition of information

Due to some error in “data tenure control” DMA could generate some bit flip and thus some untimely

transition of information.

In case of error on addresses, data could be sent to the wrong address. For valid addresses of destination,

the result would be an untimely transition of data. For non-valid addresses (forbidden transition), the result

should be a loss of data or more probably an impossible transition of information.

8.7.3.6.2.5 Impossible transition of information

Due to some error in “data tenure control” DMA could generate some bit stuck and thus some impossible

transition of information. In this case the same data could be copied in various memory zones.

8.7.3.6.3 Failure mitigation mechanisms

No failure mitigation mechanisms are integrated to DMA.

On MPC8610, internal DMA controllers use physical address and bypass the monitoring of accesses

performed by the MMU.

In the case of multicores, DMA failure modes related to untimely or forbidden transition of addresses are

partially covered by the IOMMU (subsection 8.8.3.3).

8.7.3.7 General Purpose I/O driver

GPIO driver is covered through the discrete I/O interface description of subchapter 7.2.

8.7.3.8 SPI driver

SPI driver is covered through the SPI interface description of subchapter 7.3. It is considered here that

others simple interface such as DUART and I²C exhibit similar possible behaviours.

8.7.3.9 CCSR (Configuration, Control, and Status Registers)

Configuration registers are treated in the multicore section. The challenges and results are comparable for a

single core.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 162 Réf. CCC/13/001303 – rev. 05

8.7.4 Concluding remarks

Microcontrollers are complex aggregate of IP blocks that can be themselves complex. Errors of these IP

blocks results in failures computational errors by cores and output message failures on some of the multiple

output of the MCU: GPIO, SPI, PCI, PCIe, etc. Some IP Blocks embed detection and/or mitigation

mechanisms that cover failures from the considered block and from some other blocks in interaction. These

mechanisms are synthetized in section 9.3.4.1. They can help ensuring the detection and mitigation of

microcontrollers’ errors but for such complex COTS, mixed internal and architectural and full architectural

means are necessary. The examples of detection – mitigation mechanisms given in sections 9.3.3 and

following are in general applicable to MCU.

8.8 MULTICORE MICROCONTROLLERS

8.8.1 Introduction and available data

The points covered in this chapter are applicable to multicore version of Freescale P2, P3 last series
47

, P4,

P5 series (left side of Table 16). They will in most part remain true for future T series (left side of Table

16).

Family 2 cores 4 cores 8 cores 12 cores Cores L1 L2 L3

P2 P2040/

P2041

 e500mc Per core None
48

 1

shared

P3 P3041 e500mc Per core Per core 1

shared

P4 P4040 P4080 e500mc Per core Per core 2

shared

P5 P5020 P5040 e5500 Per core Per core 2

shared

T1 T1020 T1040 e5500 Per core Per core 1

shared

T2 T2080 e6500 Per core 1 shared 1

shared

T4 T4160 T4240 e6500 Per core Per

cluster

of 4

cores

As

many

as

cluster

quantity

Table 16: Examples of Freescale multicores microcontrollers sorted by families (left column) and documented
with some of their features (right side);

These families are characterized by their implementation of

- PowerPC (QORIQ
 TM

) cores with attached L1 and in general L2 caches per cores (see Table

16),

- A Switches Interconnect called CoreNet
TM

 Coherency Fabric (CCF),

47 This is true only for some versions of P2 family that implement interconnect.
48 In other series L3 interfaces interconnect (or bus) with the DDR driver, so we consider arbitrary that P2 series do
not have L2 cache but a L3 cache.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 163 Réf. CCC/13/001303 – rev. 05

- Some large bandwidth IO,

- Some hardware accelerators like DPAA (Data Path Acceleration Architecture) for fast

Ethernet processing.

They differentiates by

- The implemented cores and the cache repartition (see Table 16);

- The detailed characteristics of implemented functional blocks and IO drivers – for instance

the P4 implement DDR2/DDR3 compatible drivers and the P5 DDR3 compatible drivers;

- The number of IP implemented.

For our purpose, these families can be considered as similar. They have been initially designed for

processing in network area applications- see for instance the P4080PB [57].

The following sections describe the main aspects of their architecture, focusing on the P4 and P5 series and

more particularly on P4080.

The basic documents available for a microcontroller are listed in the Table 17
49

.

Document name Document description Examples

Product Brief Provides an overview of the microcontroller

features as well as application use cases.

P4080 Communications Processor

Product Brief [57]

Datasheet Includes all the hardware design related

information as power supply specification

timings, thermal environment.

P4080/P4081 QorIQ
TM

 Integrated

Processor Hardware Specifications

[58]

Reference Manual Describes the features and operation of the

microcontroller

P4080 QorIQ
TM

 Integrated

Multicore Communication Processor

Family Reference Manual [33]

Core Reference

Manual

Describes the features of the core e500MC Core Reference Manual

[59]

Programmer

Reference Manual

(*)

Provides software and hardware designers

with the ability to design and program to the

instruction set architecture (ISA) defined for

embedded environment processors and by

Freescale’s implementation standards (EIS).

EREF 2.0: A Programmer’s

Reference Manual for Freescale

Power Architecture® Processors

[60]

Errata list Details all known silicon errata on the

component.

P4080 Chip Errata [61]
50

Application notes Many application notes are emitted by the

manufacturer in order to configure or use

correctly the device. Often these application

notes complement and particularise the

reference manual and eliminate some

ambiguities.

AN3532: Error Correction and Error

Handling on PowerQUICC™ III

Processors [62]

Table 17: Multicore microcontroller list of reference documents

49 The document listed here can be found on Freescale site:
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P5020&fpsp=1&tab=Documentation_Tab.
50 Reference [62] is not publically available; the reader who wishes to glance at an errata list can refer, for instance,
to P5020 chip errata [67].

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P5020&fpsp=1&tab=Documentation_Tab

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 164 Réf. CCC/13/001303 – rev. 05

Table 17 list only public documents useful for the present study. Documents signalled with an (*) are not

directly applicable but due to their operational nature they appear to be pedagogical and useful as a

complementary source of information.

As already mentioned for single core microcontrollers, some other sources are available

- White papers [63], Publication and patents [55] emitted by the manufacturer have not the

official character of a Reference Manual but can help to have an overview on a particular

topic and help to ask relevant questions to the COTS manufacturer;

- Due to the complexity of the microprocessor and of its documentation (several thousands of

pages) some training are proposed by the manufacturer and by affiliate consultants (for

instance the AC6 trainings for Freescale microcontrollers). These training cannot be

considered as elements of proof but they can help a lot in the overall understanding of the

COTS functioning.

8.8.2 Architecture description

The Reference Manual [33] of the P4080 proposes a block diagram oriented toward the features ensured by

the microcontroller. These features are:

 Computation: 8 e500mc cores, each with private 2x32kB L1 cache and 128kB L2 cache,

 Two L3 caches

 Memory features

o Two 64 bits DDR2/DDR3 memory controllers,

 High speed I/O :

o Ethernet interfaces,

o PCI Express 2.0 controllers/ports

o serial RapidIO controllers/ports

 Additional peripheral interfaces

o USB 2.0 controllers

o SD/MMC controller (eSDHC)

o SPI controller

o I²C controllers

o Dual DUARTs

o GPIO

 Enhanced local bus controller (eLBC)

 Material accelerators feature

o Two 4-channel DMA engines

o Data Path Accelerator

 Real Time Debug features

 Multicore programmable interrupt controller (MPIC)

 Power Management

Some of these features are exclusives as they consume the same SerDes lanes.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 165 Réf. CCC/13/001303 – rev. 05

Figure 88 : P4080 block diagram from P4080RM [33].

By many aspects the diagram of Figure 88 appears to be very high level with some approximation and

missing links. It is not always simple to determine if some of the blocks identified here are localized in a

drawn high level block or spread amongst various other blocks. That’s in particular the case with blocks

that offers internal services like Power Management or CCSR (Configuration, Control, and Status

Register). In such a case some non-mentioned links may exist between these blocks and others.

The next section describes these blocks, their failure modes and the embedded failure mitigation

mechanisms.

Note on memory structure of P4080

P4080 microcontroller internally addressed memory mapped as follow:

• Logical, virtual, and physical (real) address spaces within the Power Architecture core(s);

• Internal local address space that includes;

o Internal Configuration, Control, and Status Register (CCSR) address space;

o Internal Debug Control and Status Register (DCSR) address space;

• External memory, I/O, and configuration address spaces of the serial RapidIO link;

• External memory, I/O, and configuration address spaces of the PCI Express links.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 166 Réf. CCC/13/001303 – rev. 05

By the fact, almost all the blocks are linked to the CCSR or DCSR registers directly or through the

Interconnect
51

. These links are not recalled in the next section.

8.8.3 Block study

The following sub-section detail the analysis of the most important blocks depicted on Figure 88.

8.8.3.1 Cores

8.8.3.1.1 Description

P4080 cores are described in the core reference manual (see [59]) and their integration on the chip is

described in chapter 7 of the reference manual (see the P4080RM [33]). Each core has independent,

 L1 cache for instructions (32kB) and L1 cache for data (32kB);

 Mixed data and instructions L2 cache (128kB).

 Figure 89: Simplified e500MC block diagram focusing on instruction paths and memory type areas (clear grey

zones) – adapted from [59]

E500mc is a 32 bits core
52

 implementing several levels of pipelining and different levels of buffer allowing

fetching instructions, facilitating branch prediction, queuing instructions, etc.

51 In the subsequent chapter, when possible, CoreNet

TM
 will be named by its generic name “Interconnect” even if it

appears that Freescale CoreNet
TM

 covers more than the simple function of interconnecting cores and I/Os (see 0).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 167 Réf. CCC/13/001303 – rev. 05

Its architecture is very similar to the one of e600 core described on Figure 83

Each e500mc is interfaced with interconnect through its L1 cache (L2 cache is backside).

8.8.3.1.2 Failure modes

At the breakdown and abstractions level tackled here the difference between e600 and e500mc have no

impact on failure modes.

As already mentioned in paragraph 8.7.3.1.2, failure modes of the cores are those already listed in the

section 6.3 for the interface between hardware and software:

 No program instruction outing;

 Erroneous calculation outing;

 Latency in program instruction outing (Maximum Execution Time drift);

 Inversion of tasks.

Toward its interface with interconnect; each core can develop the standard failure modes developed in the

first part of section 6.3. In the particular case of transfer between cores and interconnect the wording

“message” as to be considered in a large meaning (burst should be more adapted).

Failures modes of e500mc core are considered similar to those of e600 core described in

paragraph 8.7.3.1.2.

8.8.3.1.3 Failure mitigation mechanisms

8.8.3.1.3.1 Parity Checking

A parity checking is configured on L1 Cache for instruction and Data and tags of L2 Cache in order detect

an odd number of bit flips. No Error Correcting Codes have been implemented on these caches or

information in cache because their allocated because their small volume induces a low probability of bit

considering soft errors, namely low energy alpha particle (from the package), high energy thermal particles

and thermal neutrons. This rationale induced that this parity check (as well as the Error Correcting Code

outlined in the next paragraph), is not designed to cover design errors. Tests described in chapter 9 verifies

that this assumption is respected.

Note that in order to be operative, this parity check has to be activated in core registers as described in core

reference manual [59] and outlined in Freescale Application Note AN3532 [62]:

- For L1 data, in L1CSR0 (L1 Cache Control and Status Register 0)

- For L1 instruction, in L1CSR1;

- For L2 tags, in the L2 Cache Configuration Register L2CFG0.

In case of error detection by the parity check, the relevant sanction is configurable (in the already cited

registers) and applied directly by the core without reference to the MPIC except for possible error

reporting.

52 E500mc core is an extension of e500 cores for multicores (mc). The 64 bits extension appeared with e5500 (P5
series) and the multithreading with e6500 (T series).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 168 Réf. CCC/13/001303 – rev. 05

8.8.3.1.3.2 ECC (Error Correcting Code)

An Error Correcting Code (ECC) which encoding is described in the Freescale Application Note AN3532

[62] is configured on processor memories. It correct one bit errors and detect systematically 2 bits errors.

As already noted for the parity check, this ECC is not designed to cover design errors but soft errors. It is

applied at core level on L2 data and is configurable in the L2 Cache Configuration Register L2CFG0.

The implemented ECC mechanism offer a self-test mechanism through error injection in the L2 (see core

reference manual [59] section 2.15.4.9 and EREF manual [60]). During this test phase an error is inserted

in the L2 cache and the ECC status is checked to be coherently activated in the L2 Cache Error Capture

ECC Syndrome Register.

Note: Other memories units included in the core are not covered by any parity or ECC mechanisms. This

the case for instance for

- Buffers outlined in Figure 89

- MMU internal Translation Lookaside Buffers (TLB),

- Various core related configuration and status registers.

Following argument can be given for such choice:

- The size of each of these memories is considered as negligible compared to the L1 and L2

sizes (TLB global size is 90 B);

- Due to intensive use of the buffered data even parity should be to time consuming.

Although, Cache protection by parity or ECC is now in the state of the art of microprocessors (see for

instance ARM Cortex-R series processors), buffer protection is still a research topic which merits are is

debated.

8.8.3.1.3.3 MMU (Memory Management Unit) [63]

Each core embeds a MMU that controls all the address-based accesses initiated by the cores.

Its primary purpose is to map the Effective Addresses manipulated by application software to the Real

Addresses of the local SoC mapping.

In addition to this function MMU is a protection barrier that filters each memory-mapped access in order to

prevent forbidden access of the core to a memory page. This filtering is performed through an entry in a

Translation Lookaside Buffer (TLB) and depends on the type of access and privilege level for read, write

or execute.

With this function, MMU support spatial partitioning.

Note: MMU cannot be deactivated by configuration.

8.8.3.1.3.4 Embedded Hypervisor

For a general review, please refer to [63].

In the case of Freescale multicore series (QorIQ
TM

 P3 and above), processors embed hardware assist to

ease the implementation of a virtualization layer, usually named hypervisor. Each core supports three levels

of instruction privileges: user, guest supervisor (used for guest Operating Systems), and hypervisor (also

called host supervisor). The piece of software executed in hypervisor mode is granted exclusive rights to

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 169 Réf. CCC/13/001303 – rev. 05

configure the Memory Management Unit (MMU) and some core’s Special Purpose Registers (SPR) as

specified in the corresponding reference manuals [59]. Guest software attempts to reconfigure the MMU

and SPR trigger a Privilege Exception that is handled by the hypervisor.

Therefore an embedded hypervisor has the ability to control unobtrusively operating systems' use of

hardware resources such as the main memory and peripherals (PCIe, UART). Furthermore, by trapping any

attempt to access directly a reserved resource, an embedded hypervisor can proxy this access on behalf of

the original requestor within predefined specifications. One can refer to resource virtualization techniques

for more information [64]. That prevents malicious or faulty software from invalidating platform's

dependability properties. That usage is relevant in open and/or multi Operating Systems environments as it

makes dependability requirements enforced through a single piece of software.

The market of embedded hypervisors contains both commercial solutions (VxWorks, Integrity, PikeOS,

Xtratum, Enea, etc.) and open solutions (Xen, KVM, Topaz, etc.). Most of those solutions were derived

from real-time operating systems and/or microkernels (e.g. L4 family) that were designed for safety critical

embedded applications. Home-maid hypervisors can also be developed for specific devices and

applications, such as IMA systems [65].

8.8.3.2 Interconnect: CoreNet
TM

 Coherency Fabric (CCF)

8.8.3.2.1 Description

Freescale CoreNet
TM

 Coherency Fabric (CCF) is described in the Chapter 9 of P4080RM [33]. Its basic

function is to ensure multiple parallel transactions with retry facilities, low latency and high bandwidth.

Freescale CCF acts as a central interconnect for cores, platform-level caches, memory subsystems,

peripheral devices, and I/O host bridges in the system (see Figure 88). All of them are connected to

CoreNet
TM

 either directly, either through PAMU or/and OCeaN
TM

.

Detailed information on CoreNet
TM

 is difficult to obtain and to validate considering the confidentiality

level maintained on this topic. Information on such block should be cross-checked from various public

sources: reference Manual [33], academic papers and Freescale patent [66].

From these sources, CoreNet
TM

 appears to be “interconnect” of the type switched network mentioned in

section 5.3.4.2 and represented on Figure 90.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 170 Réf. CCC/13/001303 – rev. 05

Figure 90: A possible view of an interconnect similar to CoreNet TM with three interfaces. This figure is derived

from [66].

In addition to this connection function, Freescale CoreNet
 TM

 has also a function of hardware acceleration

for some operation. It is thus possible to transfer to CoreNet
 TM

 a decorated instruction which decoration is

treated directly by CoreNet
 TM

. Such an instruction can be generated by a Core or by the PAMU that can be

configured in order to decorate instructions acting for instance on some memory zone. A typical example

of decoration is the counting of data copied by the DMA from PCIe to the DDR memory. This allow core

to be discharged from any action in such operation.

CoreNet
 TM

 configuration is defined and implemented by Freescale in some reserved zone of the

configuration register.

8.8.3.2.2 Failure modes

On each of its interface interconnect can develop the different usual failure modes. Figure 90 can be used

as a guide in order to list the possible failures of this block.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 171 Réf. CCC/13/001303 – rev. 05

8.8.3.2.2.1 Loss of Messages

Even if the Reference Manual claims that no transaction can be lost by interconnect (§ 9.1.1), it seems

important to consider this possibility. It can be noted that such a type of error has been listed in errata of

P5020 (A-004510 in [67]) before to be solved in version 2.0 of the chip.

Loss of messages can take the two following forms:

 Loss of data type message:

In addition to direct loss of message, it can be loss because addresses are corrupted or lost

 Loss of instruction type message:

Interconnect transfer programme instruction from Flash memory to DDR3 during the boot and

between DDR3 memories and caches during normal using phase. It is possible to loss this

instruction during this transfer.

8.8.3.2.2.2 Untimely transfer of message

From Reference Manual P4080RM [33], it is known that CCF implement a retry process in order to avoid

message lost. This mechanism could lead to babbling through a mechanism similar (although certainly not

identical because the protocol and the involved technologies are different) to the one described on PCIe

interface in subsection 7.7.2.2.

As mentioned on Figure 90 and confirm by the reference manual, interconnect contains buffers that could

store transaction during few clock pulses in order to wait that a way is free. The presence of such buffer

could also generate untimely resending of messages in case of pointer error.

8.8.3.2.2.3 Abnormal sequence of messages

The two afore mentioned mechanisms, which could lead to untimely transfer of information, could also

lead to possible abnormal sequence. In particular a loss of message compensated by a retry could make the

corresponding message arriving after a message sent before it.

In another way, a buffer pointer error could invert two messages.

8.8.3.2.2.4 Untimely or forbidden transition of information

An information (address, data, instruction) stored in a buffer could suffer from a bit flip and then to an

untimely transition. An ECC mechanism is settled on CoreNet
 TM

 in order to mitigate effects of this

behaviour.

8.8.3.2.2.5 Impossible transition of information

The bit flip phenomenon described in preceding paragraph could equally be a bit stuck phenomenon and

then lead to an impossible transition.

8.8.3.2.3 Failure mitigation mechanisms

CoreNet
 TM

 implements various failure mitigation mechanisms that can cover the failures listed in the

previous paragraph:

• Coherency violation detection when a state of the coherency granule was found to be in violation of

the coherency protocol prevent from untimely and impossible transitions of addresses.

• Local Access Error detection that prevent from untimely and impossible transitions on addresses:

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 172 Réf. CCC/13/001303 – rev. 05

o Local Access Window Miss. An incoming transaction misses all LAWs.

o Unavailable target ID programmed in LAW attribute register.

• Retry mechanisms that prevent for the loss of transaction;

• Transaction ordering support that prevent from abnormal sequence;

• ECC on buffers that prevents from untimely and impossible transitions.

8.8.3.3 Peripheral Access Management Unit (PAMU)

8.8.3.3.1 Description

PAMU is described in chapter 10 of P4080RM [33]

The PAMUs reside at the interface between what is considered as a coherency zone (interconnect, cores

and DDR drivers) and the IO domains (see Figure 88).

Complex peripherals (included DMA) can interact with the CoreNet
 TM

 and intrude to memory. PAMU

plays an equivalent role as those played by MMU and enforces authorization and access control into the

coherency domain. More generally PAMU has three main roles:

• Check access rights of an I/O or a DMA to some physical addresses;

• Address translation from logical I/O addressing to memory physical addressing;

• Instructions translation from peripheral IP protocol for operations to CoreNet
 TM

 protocol, for

instance it can forbid to an I/O to perform decorated reading / writing.

The last functionality is linked with the previously mentioned functionality of CoreNet
 TM

 related to

decorated instructions. (See paragraph 8.8.3.2.1)

In order to perform this access right checking, the address maps necessary to PAMU are stored in DDR in

Peripheral Access Authorization and Control Tables (PAACT). When a master I/O try to access the

coherency domain through PAMU (see Figure 91), PAMU check its Logical I/O Descriptor Number

(LIODN) with entry (PAACE) of PAACT stored in PAMU Cache (1). In case of cache miss, PAMU

fetches corresponding PAACE value from DDR to cache (2). If no access violation is detected the

corresponding transaction is acquitted. If not an access violation status is raised.

Open document analysis allows an

indicative mapping of PAMU instances

to different peripheral:

• PAMU1:

o Local Bus (eLBC) and

other I/O and internal IP

(see P4080RM [33])

o Part of DPAA

concerning Security

Manager, Pattern Match

Engine and Rapid IO

Manager;

• PAMU2:

o Part of DPAA

concerning Queue

Manager, Buffer

Manager and the RAID

(Redundant Array of Independent/Inexpensive Disks);

Figure 91: PAMU access right checking simplified process.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 173 Réf. CCC/13/001303 – rev. 05

• PAMU3: DPAA: Frame Manager;

• PAMU4: OCeaN
TM

 Switch Fabric and thus PCIe, SRIO (Serial Rapid IO) and DMA.

Although this mapping is coherent with Figure 88, the following sentence of [33], let suppose that there be

only one PAMU with 16 entries:

“The PAMU is partitioned into 16 identical instances. Not all are necessarily backed with physical

hardware. However, all of them must be programmed identically or undefined behaviour may result.” [33]

p. 121.

8.8.3.3.2 Failure modes

PAMU is a protection block. It should protect against abnormal behaviours of the peripherals or material

accelerators in interface. In case of failure, the embedded protection mechanisms implemented in PAMU

can impact transactions sent on the CoreNet
 TM

.

8.8.3.3.2.1 Loss of Messages

Due to its protection function, PAMU can untimely block some transaction considering that they are not

addressed to the right zone. This can be generated by a corruption of the PAACE (Peripheral Access

Authorization and Control Entry) within PAMU Cache or in DDR.

8.8.3.3.2.2 Untimely transfer of message

There is no evidence that PAMU implement data cache or buffers so this behaviour is not considered here.

8.8.3.3.2.3 Untimely or forbidden transition of messages

When activated, the translating

addresses mechanism implemented by

PAMU can corrupt address (untimely

or forbidden transition on addresses or

impossible transition on addresses).

This phenomenon will erase and

replace a data in the memory zone

dedicated to the considered I/O (Figure

92 - (6)) unless a second error occurs

in the LIODN check. In this last case a

breaking of spatial partitioning may

occurs.

These failures can be caused by

corruption of some table entries
Figure 92: Address translation fault mechanism.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 174 Réf. CCC/13/001303 – rev. 05

involved in address translation mechanisms, in cache or in DDR.

8.8.3.3.2.4 Impossible transition of information

See previous paragraph.

8.8.3.3.2.5 Abnormal sequence of messages

There is no evidence that PAMU implement data cache or buffers so this behaviour is not considered here.

8.8.3.3.3 Failure mitigation mechanisms

As outlined in description section, m ain function of PAMU is dedicated to failure mitigation mechanism.

Indeed PAMU help ensuring spatial partitioning (note that it has no influence on some time partitioning).

The failure mechanisms described in previous paragraph may be caused mainly by additional PAMU

features. All involved corruption of some tables in DDR or in PAMU cache.

It has to be noted that the ECC mechanism described in paragraph 8.8.3.1.3 about core L2 caches is also

implemented on PAMU cache so that single bit flip will be corrected and double bit flip detected.

8.8.3.4 CoreNet
 TM

 Platform Cache (CPC)

8.8.3.4.1 Description

CoreNet
 TM

 Platform Cache is described in Chapter 8 or P4080RM [33]

The CoreNet
 TM

 platform cache (CPC) is a CoreNet
 TM

 -compliant target device that functions as a general

purpose write-back cache, I/O stash and memory mapped SRAM device, or a combination of these

functions.

• As a general purpose cache, it manages allocations and victimizations to improve read latency and

bandwidth over accesses to backing store (for example, DRAM). As an I/O stash, it can accept and

allocate writes from an I/O device in order to reduce latency and improve bandwidth for future read

operations to the same address.

• As an SRAM device, it acts as a low-latency, high-bandwidth memory that occupies a

programmable address range.

The two CPC are interfaced with the CoreNet
 TM

 on one side and one DDR3 memory controller in an inline

configuration.

8.8.3.4.2 Failure modes

As memory CPC can develop the common following failure modes. Moreover the CPC is highly

configurable and corruption of this configuration in CCSRBAR may strongly change the behaviour of

CPC.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 175 Réf. CCC/13/001303 – rev. 05

8.8.3.4.2.1 Loss of messages

Loss of messages is a basic mode of memory - although SRAM is reliable. Some configuration of CPC

could make loss of data if corrupted.

8.8.3.4.2.2 Untimely transfer of messages

This transfer is not initiated by the CPC itself. This mode has to be imputed to agents that can act on CPC:

• CoreNet
 TM

,

• Cores (through CoreNet
 TM

 and PAMU)

• Peripheral (through CoreNet
 TM

 and PAMU) and in particular DMA

• Etc.

8.8.3.4.2.3 Untimely or forbidden transition of information

A bit flip can change the information before it is read.

8.8.3.4.2.4 Impossible transition of information

A bit stuck can prevent information to be changed when it is written.

8.8.3.4.2.5 Abnormal sequence of messages

Inversion in the delivery order of messages cannot be excluded although it depends upon design details

under NDA information.

8.8.3.4.3 Failure mitigation mechanisms

CPC includes separate ECC mechanisms on tag and data

CPC includes error injection mechanisms.

Errors detected are reported in a register.

8.8.3.5 Multicore Programmable Interrupt Controller

8.8.3.5.1 Description

The MPIC (Multicore Programmable Interrupt Controller) is a centralized resource that

- Concentrates internal and external requests for processes interruption;

- Prioritizes these interruptions;

- Applies them and

- Manages the interruption follow-up.

The interruption sources are mainly:

 External events;

 Internal SoC events (112 sources for P4080);

 MPIC events based on

- Inter-processor interrupt channels,

- Message Signal Interrupt from PCIe,

- Message interrupt channels from MPIC,

- MPIC global timers.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 176 Réf. CCC/13/001303 – rev. 05

Note that MPIC do not managed core driven interruption outlined, for instance, in the case of Cache Parity

or ECC errors. These interruptions are directly managed by the core (see Figure 93).

Figure 93: Simplified view of interruption mechanisms (see [33] and [63]).

8.8.3.5.2 Failure modes

8.8.3.5.2.1 Loss of message

The loss of some critical IT will make impossible to raise a diagnostic on the multicore and then to reset it.

8.8.3.5.2.2 Untimely transfer of message

Untimely raising of non-critical IT may temporarily interrupt the running applicative partition and slow

down the execution creating Maximum Execution Time drift and potentially erroneous execution if the

partition execution exceeds its allocated time slice.

Untimely (advanced) raising of critical IT when no rising is requested could lead to a global reset of the

COTS.

Untimely (late) raising of critical IT could delay a reset and lead to erroneous execution of the partition.

8.8.3.5.2.3 Abnormal sequence of messages

No scenario found in the abnormal sequence of two interruptions.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 177 Réf. CCC/13/001303 – rev. 05

8.8.3.5.2.4 Untimely or forbidden transition of information

Untimely transition of an interruption from one nature to another could lead to wrong diagnostic of the core

to be reset (in case of partial reset) or to other erroneous decision.

8.8.3.5.2.5 Impossible transition of information

See Untimely transfer of message

8.8.3.5.3 Failure mitigation mechanisms

Despite of their role on detection and/or mitigation of microcontroller errors (see Mixed mechanisms on

section 9.3.3), no internal mitigations have been found that could control the PIC. Section 9.3.3 implements

mechanisms that use the MPIC.

8.8.3.6 CCSR (Configuration, Control, and Status Registers)

8.8.3.6.1 Description

In such a configurable object as a multicore microcontroller is configuration register is a crucial point.

In paragraph 8.2.3.3 a small preview of the possibilities and associated risks offered by these configuration

registers have been explored. In a microcontroller like the P5020, the size of these registers is 16 MB and is

comparable on P4080.

It groups in one hand activations and fine tuning variables of each block, IP or features of the

microcontroller and in the other hand status of these blocks, IP or features.

Table 28 of Annex 1 shows the range of addresses for each blocks, IP or features of the P5020. It is similar

for the P4080 even less documented.

This table calls for several remarks the block and features covered and the relative volume of reserve

ranges compare to accessible range.

Indeed, it is important to note that CCSR contains:

- Customer accessible configuration,

- Manufacturer reserved configuration,

- Open and private status.

From Table 28 it can be computed that at block level 90% of the 16 MB are reserved by the COTS

manufacturer. These zones can be reserved for hidden configuration purposes but at this level, more

certainly, for future development purposes.

At block configuration level zones are again reserved or not documented. For instance considering CoreNet

TM
 Coherency Fabric CCSR zone, ranging from 0x01_8000 to 0x01_8FFF, addresses from 0x01-8000 to

0x01-8680 (1664 B) and addresses from 0x01-8A18 and 0x01_8FFF (1511 B) are not documented and

could contain hidden configurations or status.

This pattern, the criticality of configuration variables and the intellectual property stakes defended by the

COTS manufacturer, lead to some possible strategies for the protection of CCSR. This protection is

discussed in next chapter.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 178 Réf. CCC/13/001303 – rev. 05

8.8.3.6.2 Failure modes

8.8.3.6.2.1 Loss of message

As already noticed for bridges, a configuration register can be corrupted but not lost.

8.8.3.6.2.2 Untimely transfer of message

In addition to being accessible by the processor cores, the CCSR are accessible from external interfaces in

particular SRIO and PCIe. This allows external masters on the I/O ports to configure the device (P4080RM

[33]).

 An untimely access of PCIe (for instance) to CCSR could untimely change a part of the

configuration.

8.8.3.6.2.3 Abnormal sequence of messages

8.8.3.6.2.4 Untimely or forbidden transition of information

First entries of Table 28 “Local access control-Local configuration control” are in fact the configuration of

the localization of the configuration table.

 Such auto reference could lead to a global untimely transition of the value of the configuration table

to a valid albeit incorrect value or to a forbidden transition to a value that does not correspond to an

admissible configuration (in totality or partially). In any case, the behaviour of the microcontroller

would be in this case unpredictable.

External masters do not need to know the location of the CCSR memory in the local address map. Rather,

they access this region of the local memory map through a window defined by a register in the interface

programming model that is accessible to the external master from its external memory map.

In particular, the PCI Express controller's base address for accessing the local CCSR memory is selectable

through the PCI Express CCSR base address register (PEXCSRBAR), at some offset (P4080RM [33]).

 A normal access for configuration of PCIe with a corrupted PEXCSRBAR could lead to a shift in

the zone written through this configuration transaction and by the way to a major untimely or

forbidden transition of the configuration. In this case the behaviour of the device could be changed

depending on the zone modified.

 More basically and locally, an untimely modification of a configuration bit could for instance

activate a deactivated block or modify the behaviour of a block. This modification could be easily

detectable or not.

8.8.3.6.2.5 Impossible transition of information

Applied to configuration register, this mode is “impossible transition of configuration”. It is only relevant

in case of configuration change request through PCIe. In this case a PCIe initiated change of configuration

should not be effective.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 179 Réf. CCC/13/001303 – rev. 05

8.8.3.6.3 Failure mitigation mechanisms

There are no particular protections on CCSR. Some architectural detection and mitigation means are

dedicated to configuration registers (see section 9.3.4.2).

8.8.4 Concluding remarks

Many aspects of microcontroller concluding remarks are applicable here. The prominent aspects of

multicores compared to single core are the generalization of interconnect crossbar in their design and the

presence of drastically more transaction initiators that can generate abnormal behaviour (fir instance

untimely transfer of message and even loss of message) through contention phenomenon on interconnect.

This interconnect implement itself some mechanisms in order to avoid or to mitigate this phenomenon.

Modern microprocessors increase their interconnectivity and in particular the possibility to interact directly

with the memory through I/O like PCIe. In order to control such operation multicores (at least those

embedding interconnect) implement mechanisms like IOMMUs (PAMU in Freescale context) that prevent

from untimely or forbidden transition of address accessible through I/O or DMA. These mechanisms are

synthetize in section 9.3.2 and complemented by mixed and by architectural mechanisms in the following

sections.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 180 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 181 Réf. CCC/13/001303 – rev. 05

9 DETECTION ISOLATION AND MITIGATION OF COTS DESIGN FAILURES

9.1 INTRODUCTION

Previous chapters list, for various different COTS through their internal structure or their interfaces, a large

panel of potentialities. This study mapped a failure meta-model on each element analysis in order to

discover the potential failure it could develop. The study tried to stay as open minded as possible, keeping

open failure modes even if no credible scenario were found.

The present chapter aims elaborating a global strategy for detection, isolation and mitigation of the failures

discovered previously. It appears by the way that COTS internal failures, caused by design errors,

described in the previous chapters might be detected isolated and their effect mitigated at various level.

These mechanisms are organized and described in next subchapters in a two main steps process.

The first step of the method is the formalization of a specification of the needs the user has for the COTS

and the corresponding tests. These tests covers domain like functional, endurance tests, worst case tests,

limit tests,. Even if some of these tests seem to be more functional tests than error detection, isolation tests,

we show how to exploit them toward this purpose.

Tests mark off a confidence perimeter for usage of this COTS for which requested performances are

ensured and within which no failure modes due to potential design errors can occur.

The bounding is realized in this steps by COTS configuration and when possible by implementation of

usage limitation by configuration and guest OS.

The second step is the definition of mitigation means in order to guarantee that the usage of this COTS

stays in this perimeter all along its life.

Detection and mitigation mechanisms can be internal to the COTS, mixed or purely architectural (see

subchapter 9.3).

The detection and mitigation mechanisms tested either at COTS internal level and at architectural level

should be tested through fault injection (see subsection 9.2.3.4).

COTS-

AEH_Suggestion_1.

Use of internal detection / mitigation mechanisms

In global mitigation strategy definition, the internal mechanisms selected should

be:

- Specified;

- Managed: activation mode, configuration, error handling;

- Tested.

Note: Application of the suggestions contained in this report cannot be requested. Nevertheless if a

suggestion is applied, the activities proposed should be realized.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 182 Réf. CCC/13/001303 – rev. 05

Figure 94 presents this general procedure.

Figure 94: General mitigation process.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 183 Réf. CCC/13/001303 – rev. 05

9.2 COTS SPECIFICATION AND TEST BASE MITIGATION

9.2.1 Inputs data and associated studies

9.2.1.1 Program Usage Domain

First objective of COTS specification is to define the need for the COTS. The first input for this

specification is thus the program usage domain for the COTS defined on the basis of general needs (in

particular for the microprocessor) and of system or hardware architecture for some others COTS (for

instance a bridge).

This need analysis allows to list and to characterize the functions waited for the COTS:

 Computing function: Mega Instruction Per Second (MIPS), Floating point Operations Per Second

(FLOPS) etc.;

 I/O type and number needed: PCIe, PCI, SPI, etc.;

 …

Such an approach was already the starting point of [6] and has been normalized in [5]. Recommendations

of [6] and requirements of [5] are applicable here even if they are not systematically recalled in order to

focus on failures mitigations. For instance the compilation of documentation – public or under NDA, the

adequacy between the compiled documents and the SoC version, etc. is prerequisite to the approach

proposed here. Points of [5] and [6] rose in this chapter are only those for which we propose refinements.

The first objective of this program need analysis, enriched by system, hardware and software preliminary

considerations, are to justify the choice for the COTS to be used.

It will be a major input for COTS specification when COTS will be selected.

9.2.1.2 COTS documentation

COTS documentation should be analyse in order to

 Confirm the adequacy with the need;

 Identify the COTS functions;

 List the logical block and their functions.

These first elements are necessary and sufficient to build a first functional version of the COTS

specification (see section 9.2.1.4 for developments).

9.2.1.3 Errata exploitation

As soon as COTS and its features are selected, known errata have to be analysed in order determining their

applicability and safety impact. Possible workaround have to be evaluated
53

 starting from, but not limiting

to, those proposed by the COTS manufacturer. It has to be reminded that COTS manufacturer does not

know the COTS foreseen usage and that among these usages, airborne applications are very particular.

Workaround proposed by the COTS manufacturer may not be applicable in an airborne environment. For

53 In some cases, the bug will be fixed in a new release of the COTS (see Table 18). If this release is delivered
before the beginning of the test, the corresponding erratum has to be kept under supervision but no workaround
could be considered.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 184 Réf. CCC/13/001303 – rev. 05

instance a CRC that is not correctly decoded cannot be simply deactivated (e.g. Table 18). It has to be

replaced at OS level by a corresponding protection.

Table 18: An erratum example from [67].

9.2.1.4 COTS failure analysis

A COTS failure analysis not oriented to any failure rate breakdown but to list COTS potential failures due

to design errors
54

 at black box and grey box levels as performed in the preceding chapters enriched the

specification and the resulting test plan.

The analysis should be tested back to back with the observed errata. Even if errata result in general from

complicated scenarios, they should be expressed as a basic failure mode of the block. The example of

Table 18 corresponds to an impossible detection of corruption by a CRC (see subchapter 7.7.). In the

previous failure model, it corresponds to “impossible transition of ECRC error status register to error".

Errata should thus be classifiable and classified into the category of failure modes discovered in the failure

analysis. In case of impossibility, Failure analysis should be enriched in a coherent
55

 process of lessons

learnt integration.

9.2.2 COTS specifications

The specification can be built on the basis of previous inputs. Typical structures encountered are

 A black box specification describing the main functions of the COTS requested by the program and

their characteristics. It has to be organized in requirements and covers

o The features requested for the COTS

For instance, computation capabilities, 2 PCIe 4x; 1 SPI, 2 DMAs; etc. ;

o The COTS features that have to be deactivated;

o The failures of COTS outputs associated with used features or deactivated features.

 A grey box design document describing the blocks, their features and configurations

o The blocks necessary in order to realize the requested features;

o The block that have to be inhibited nd the way to inhibit them;

54 This analysis will be later useful for COTS manufacturing errors preview and will be also exploitable for random
failure analysis.
55 The objective, here, is not to add a new found mode (e.g. from errata) to a list of pre-existing failures but to extend
the failure model homogeneously and consistently.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 185 Réf. CCC/13/001303 – rev. 05

o The configuration of activated blocks in order

 to ensure the requested features and

 to prevent against the appearance of unwanted features;

o The COTS internal failure modes identification from Airborne equipment developer with

 Failure modes observed in errata from COTS manufacturer ;

 Potential failure modes identified in Analysis of airborne equipment developer;

o The specification of workaround for failure modes that are effectively seen in errata;
o The way to detect and mitigate the failure modes;
o The detection mechanisms guaranteeing in operation that the detection and mitigation

mechanisms defined below are operational.

A particular importance is coated by means of deactivation and more generally by configuration as outlined

in paragraphs 8.2.3.3 and 8.8.3.6.

9.2.3 Tests with regard to specification and usage domain limitation

Test plan is based on COTS specification and aims at specifying test cases allowing verifying primarily

that the COTS realizes correctly its intended functions with waited performances (MIPS, WCET, etc.).

As already outlined, it is not possible to define Point of Control (PoC) or Point of Observation (PoO) inside

COTS, so typical test cases will rely on external stimulus and external observation in order to test this

correct implementation of COTS features (Figure 95).

Figure 95: The simplest black box test.

To notable exception may be noted:

- In case of programmable COTS, it can be considered that at some point the test program

executed by the core is known and that it induces a PoO;

- The data transfer between a COTS and a memory is not observable (see subsection 5.3.3.1).

Memory should be qualified separately and then the ensemble COTS-memory is not

separable from test point of view.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 186 Réf. CCC/13/001303 – rev. 05

The knowledge acquired in analysing the COTS documentation will allow efficient description of these

tests and interpreting their results.

The categories of tests of interest that are implemented are in general:

 Functional testing;

 Endurance testing;

 Detection and Mitigation mechanism testing.

9.2.3.1 Functional testing

Some engineering functional test may be realised in order to guarantee that the characteristics of the COTS

requested in the specifications have been achieved ([4] §6.2.1 Objective 1). The COTS is given input data,

which adequately characterises the normally expected operation. The outputs are observed and their

responses are compared with that given by the specification with respect to:

 Their values,

 The execution time.

Non-compliance with the specification and indications of an incomplete specification are documented.

Some functional tests associated to the behaviour of standardized IP can be delegated to COTS

manufacturer. Standardized interfaces like ARINC 429, MIL-STD-1553, PCI or PCIe are particularly

adapted to this process because compliance of the interface to the standard can be unambiguously proven

by successful realization of a set of test. It can be noted that, for instance, PCI-SIG provides a set of

compliance tests [68] in order to ensure compliance of an IP PCIe to the standard. This delegation required

minimum confidence gained for instance through assessment of [5] chapter 9 activities [3], [6] and [9].

Even in this case, functional testing may be performed by the COTS customer as they provide elements for

good integration of the IP within the COTS and the reference for more elaborated tests with more PoC and

more PoO.

Even if PoC and PoO are necessary in interface with the COTS I/O, buried block internal interfaces are

addressed through these tests. In this case however the test coverage can be partial because it remains

always internal degrees of freedom that can neither be constrained nor controllable.

Consider for instance, a test on a MCU for which some data are prepared in a DDR memory (see Figure

96) through a PCIe port. Consider then that the test protocol consists in testing DMA transfer from the

DDR to another PCIe. Results are captured on an external device through PCIe output.

This test does not activate only PCIe and DMA but also the switch matrix, Interconnect, DDR Controller

(plus L3 cache on a Freescale Multicore), IOMMU (not represented on the diagram), DDRx itself.

It is not fully clear if all the modes of buried blocks are covered in this test. No PoC can be implemented

here so it remains always more degree of freedom on a block like interconnect than constraints to resolve

them. It is also the case for DDR controller because of the non-observability of the bus between DDR

controller and the DDR itself (see section 5.3.3 for discussion).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 187 Réf. CCC/13/001303 – rev. 05

Figure 96: DMA transfer between DDR to PCIe (the DMA->DDR arrow symbolise the read request)

Functional tests are usually extended toward worst case tests for functional conditions. In these tests

combination of worst input conditions are generated on IP that can initiate transactions (via PoC) so that

the internal IPs are stressed. Such tests aim at finding contentions that could entail the performances of the

COTS or its determinism. For instance in the test described here before (Figure 96), increasing volume of

data are transferred, with other resources of the COTS soliciting the common internal blocks such as

interconnect. In this condition the PoO checks if data are not slowed-down, lost or corrupted.

9.2.3.2 Endurance testing

Endurance tests aim at testing the hardware element with input data selected in accordance with as many

dynamical configuration as possible. We mean here by dynamical configuration scenarios of interaction of

the COTS with its environment.

It appears that the randomization of test cases and scenario (See Dervin 2012: [69]) added with a

systematic definition of test classes with multiple PoC and PoO that this class of tests can detect COTS

design errors. In such a test different scenario (corresponding in general to the cyclic permutation of

memory cells (similar to a 15-puzzle) are chained in a random way. The histories generated by

accumulation of elementary scenarios are close to operational scenarios. Complex scenarios reported in

errata sheet are in general reproduced during this test.

Note that extension of functional tests, as expressed on the previous example around Figure 96, lead to the

endurance test of internal interfaces.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 188 Réf. CCC/13/001303 – rev. 05

9.2.3.3 Tracking of failures during functional and endurance tests

Failure may occur during test realisation, in particular during endurance tests that are specified with

objective to reveal design failures.

Some “in-test” monitoring has to be specified and realized in order to check the non-occurrence of these

failure modes:

 “loss of data”, “untimely or forbidden transition of information” and “impossible transition of

information” can be detected through comparison of data received with data expected;

 “untimely transfer of message” and “abnormal sequence of messages” can be detected by

numbering the transactions;

It is in general difficult to perform these checks on data exchanged for all the data. During a test campaign

a compromise has to be reached between the lengths of histories tested (operational efficiency of the test)

and the granularity of check performed on data exchanged (relevancy of the tests).

These different topics are summarized in (COTS-AEH_Suggestion_2.):

COTS-

AEH_Suggestion_2.

Verification of information transmitted during tests

During test sequences, data transmitted through the COTS should be monitored

with respect to the possible failure mode identified.

Two other particular types of data should in addition be monitored in order to track design errors:

(1) Verification that embedded error detection and mitigation mechanisms do not mask any

design error.

During test, monitoring of embedded mechanisms allows verifying that they do not hide any

malfunction. For instance,

 Retry mechanism of PCIe could hide a loss of transaction by physical layers. Monitoring

this mechanism allows checking this loss.

 An ECC on a memory could correct errors in read or write transactions. Monitoring the

status of ECC allows checking this untimely or forbidden transition.

When this status monitoring is difficult to perform, temptation could be great of deactivating the

corresponding mechanism during test so that the result of the test could be negative in case of error.

Such a solution should be advanced with caution. Indeed, deactivating during test, a mechanism

that will be in place in operation, changes the studied device under test and weakens the

conclusions of the test.

On (highly) complex COTS monitoring of embedded mechanisms is in general possible through

access to status registers either directly or through PIC entries.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 189 Réf. CCC/13/001303 – rev. 05

This important point is formalized in (COTS-AEH_Suggestion_3.);

COTS-

AEH_Suggestion_3.

Verification of detection / mitigation mechanisms status during tests

During test sequences, COTS internal detection/Mitigation Mechanisms that are

embedded in COTS or in COTS interfaces should be monitored and their status

should be reported

(2) Detection of unexpected activation of deactivated features can be done by monitoring of their

deactivation registers and / or monitoring of their outputs.

During, both functional and endurance testings, features that have been deactivated by configuration could

unexpectedly reactivate.

This could be probably due to a bit flip in configuration registers but maybe also due to a degraded

functioning caused by an influence of another block at physical level even if the configuration bit is still at

deactivated value (Figure 97).

In order to cover these two causes, it is important to monitor the deactivated features by two means:

 The configuration - this can be done at the end of each test bench;

 The activation of inhibited features – this can be done by output monitoring.

COTS-

AEH_Suggestion_4.

Status verification of inhibited functions during tests

During test sequences, both configuration status and outputs of COTS inhibited

features should be monitored.

If during testing, no unexpected activation was noted without bit flip in register, then it appears that register

monitoring is an admissible detection mechanism in order to prevent unexpected activation of deactivated

features. This mechanism will be described in section 9.3.4.2.

In order to be able to compare the different test results the following suggestion is proposed:

COTS-

AEH_Suggestion_5.

Configuration management of COTS under test

When test are performed on several instances of the same COTS:

(a) their configuration should be identical;

(b) This configuration should be managed in configuration;

(c) An impact analysis should be performed in case of modification of

configuration during project time (after exploitable tests begun).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 190 Réf. CCC/13/001303 – rev. 05

Figure 97: Unexpected activation of a deactivated feature.

Due to the volume of data exchanged during tests (that are in general automatized) the compromise

between the number of tests performed and the data collected during tests is also applicable (see beginning

of this subsection). Full monitoring of configuration registers and of output characteristics cannot be

applied directly and two possibilities are offered for detection of possible “loss of data”, “untimely” and

“impossible transition of information”:

 Compute a CRC on data in addition to the cyclic permutation operation;

 Compare only a sample of data to the before and after test.

9.2.3.4 Test of detection and mitigation mechanisms

In subchapter 9.3 various mechanisms are described and classified. The correct functioning of these

mechanisms has to be assessed by test.

COTS-

AEH_Suggestion_6.

Verification of Detection and Mitigation Mechanisms

During integration tests at various levels, detection / mitigation mechanisms should

be tested in particular through fault injection tests.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 191 Réf. CCC/13/001303 – rev. 05

The test procedure dedicated to this kind of test is fault injection. Fault injection aims at verifying that

detection and mitigation mechanisms trigger correctly when a fault in injected in the device. They can be

assimilated to robustness tests of [4] applied to detection / mitigation mechanisms. Five different types of

tests based on fault injection tests can be identified [70]:

 Basic fault injection;

 Out of backup state when fault disappear;

 Non triggering under environmental or operational
56

 stress;

 Fault injection under environmental or operational stress;

 Out of backup state when fault disappear under environmental or operational stress.

Basic Fault injection:

 Initialisation: the device is configured so that the mechanism can be activated;

 Triggering event: erroneous input or internal fault;

Such an error simulated in the data processed by the mechanisms is not always easy to generate.

COTS integrated detection/mitigation mechanisms are of two types.

o First ones correspond to interface related mechanisms (e.g. PCIe ECRC, LCRC, Retry,

MIL-STD-1553 Parity, etc. based on the

interface standard and its implementation);

o Second ones correspond to particular

protections of buried blocks (Parity and

ECC on various caches in

microcontrollers).

The first category of mechanisms can be tested

through fault injection along the interface. For

instance, it is quite easy with a generator of PCIe

frame to generate an erroneous frame along the

PCIe Link.

The second ones integrate in general a check

mechanism. It is in particular the case of ECC and

parity mechanisms of Freescale microcontrollers

that embed a mechanism simulating failures in caches in order to verify the correct functioning of

ECC or parity both from configuration and implementation viewpoints. Such a mechanism does not

exist for all COTS;

 Observable state: the mechanism should detect the failure and let the device falling in backup mode.

56 Here, environmental will be extended to contextual situation. First order limit conditions for the studied
mechanisms are more the task ensures by other part of the COTS than physical environmental conditions albeit EM
field should be also considered.

Figure 98: Basic fault injection : when input
stimulus go from OK (green) to NOK (red), the

output should transit from Ok (green) to backup
mode (orange)

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 192 Réf. CCC/13/001303 – rev. 05

Out of backup state when fault disappear:

 Initialisation: the device in a backup mode as the

mechanism triggered;

 Triggering event: Stop of the fault injection;

 Observable state: the mechanism should let the

device go out the backup state.

Non-triggering under environmental or operational

stress:

 Initialisation: the device is configured as in the basic

fault injection but it operates under stress. For

instance:

o Under Electro-Magnetic field;

o Under important workload;

 Triggering event: non faulty input and no internal

fault;

 Observable state: the mechanism should let the

device in normal mode. In the case of stress due to

abnormal workload, this is obtained by monitoring

internal mitigation mechanisms during functional

and endurance test.

Fault injection under environmental or operational

stress:

 Initialisation: the device is configured as in the basic

fault injection but it operates under stress. For

instance

o Under Electro-Magnetic field;

o Under important workload;

 Triggering event: erroneous input or internal fault;

 Observable state: the mechanism should detect the

failure and let the device falling in backup mode.

Due to environmental and operational stress the

mechanism could react lately or not react at all.

Figure 99: Out of backup state: when input
stimulus goes from NOK to Ok, the output

should transit from backup to Ok

Figure 100: Functional test under stress: the
output signal should remain Ok and not transit

to backup state.

Figure 101: Fault injection under stress: when
input stimulus goes from OK to NOK, the output

should transit from Ok to backup mode

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 193 Réf. CCC/13/001303 – rev. 05

Out of backup state when fault disappear under

environmental or operational stress:

 Initialisation: the device is configured as in a

backup mode and operates under stress. For

instance:

o Under Electro-Magnetic field;

o Under important workload;

 Triggering event: Stop of the fault injection;

 Observable state: the mechanism should let the

device go out the backup state. Due to

environmental or operational stress, the mechanism

could let the device in the backup mode.

9.2.4 Test results and constraints on COTS specification

The tests exploitation strategy can be expressed following the process of Figure 103 (Process for detection

and mitigation definition) that details the overall process from Figure 94 (General mitigation process.).

This process is organized around COTS specification, test specification and test result exploitation. On the

basis of test results the following cases are imaginable:

 An error rises during test:

Rising of an Error during test triggers an analysis that determines its possible causes in COTS

design or possibly in test specification.

In case of confirmed COTS error, the COTS specification is modified in order to take into account

workaround solutions against design errors discovered during tests.

Workaround can be either local (at COTS level) or at system
57

 level and realized through:

o Feature complete deactivation (local),

 Case of a feature not mandatory to user needs;

o Feature particular configuration (local),

o Limitation of COTS features through Operating System (system),

o Limitation of COTS features through hardware (system).

This workaround definition impacts system design and COTS specification(s).

If no admissible workaround can be found, COTS use should be reassessed and a backup solution

should be researched.

57 System has to be taken here, in a non-contextual significance: a reunion of some hardware and software.

Figure 102: Out of backup state under stress:
when input stimulus goes from NOk to Ok, the

output should transit from backup to Ok

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 194 Réf. CCC/13/001303 – rev. 05

Figure 103: Process for detection and mitigation definition

 No error found in the usage domain.

In this case the question of coverage by test of COTS possible usages and behaviours should be

asked.

o If this coverage is not considered as sufficient then two types of error detection and

mitigation should be defined.

 Detection / Mitigation defined to guarantee a controllable functioning in the defined

usage domain;

 Detection / mitigation mechanisms defined to guarantee the COTS remains in the

domain of controllable determinism.

o If this coverage is considered as sufficient (for instance for a COTS with simple peripheral

linked by a simple and well known bus) then the detection and mitigation mechanisms to be

designed will be limited to those that guarantee the COTS remains in its defined usage

domain

At this stage coverage cannot be proven mathematically. Engineering judgment will be used to establish

the separation between cases for which the test qualitative coverage is considered sufficient, from those for

which it is not.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 195 Réf. CCC/13/001303 – rev. 05

The complete mitigation set consists in

 Guaranty of a safe and deterministic perimeter,

 Controllability of failures from zones none fully testable.

It is organize in two main set of methods

 General methods that principle is in great part independent from the COTS studied and can even

cover several COTS

 Particular methods applicable to one COTS and that can rely on internal diagnostics of this

COTS.

9.3 MECHANISMS FOR DETECTION AND MITIGATION OF DESIGN ERRORS

9.3.1 Introduction

COTS design errors mitigation can be understand at several levels of breakdown described hereafter from

the deeper to the wider (see Figure 104):

 COTS level: some mitigation means are embedded within the COTS. They have been described in

the previous chapters and exploited in a forthcoming section;

 Board level: it is the principal level on which the architectural mitigation means takes place;

 LRU (Line Replaceable Unit) level: by extension of the board it can contain some mitigation means

even if in general by design it should be possible to favour the board level for locality and

readability reasons;

 Avionic suite and aircraft level: Even if as a last resort, functional safety mechanisms at aircraft

level could detect and mitigate a COTS design error that could have leak from LRU level, it should

be ensured that the mitigation should take place at the next higher level of COTS component in the

equipment/LRU breakdown or at least at the closest higher level as possible. Indeed, the objective

is to ensure that the Development Assurance Level assigned to an equipment/LRU is achieved with

the expected rigor.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 196 Réf. CCC/13/001303 – rev. 05

Figure 104: different levels of locality in comunications

This could be summarised in the following Suggestion (COTS-AEH_Suggestion_7.)

COTS-

AEH_Suggestion_7.

Integration level for definition of detection / mitigation mechanisms

During definition of detection / mitigation strategy, COTS design error detection /

mitigation mechanisms should be defined as closer as possible from the COTS.

System and aircraft levels may be considered only when no detection / mitigation

could be implemented locally.

This suggestion led us to concentrate more on local mechanisms than on aircraft architectural

mechanisms. The different mitigation means relevant to our goals are described hereafter. For complete

reviews, please refer to IEC-61508 [26] part 7 or IS0-26262 [9] part 5 Annex D.

Study of the available mechanisms split them in three categories:

 Mechanisms relying on internal mitigation means of the COTS; These mechanisms have been

described in the corresponding sections of chapters 7 and 8. These mechanisms are grouped in a

dedicated section hereafter (9.3.2);

 Mechanisms relying on internal COTS detection means and on external mitigation means

(Mixed mechanisms covered in section 9.3.3). These mechanisms are shared among internal

COTS resources and architectural means. This mechanisms use in general PIC and debug

interfaces;

 Mechanisms fully relying on architecture means for detection and mitigation are covered in

sections 9.3.4.1 to 9.3.4.5.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 197 Réf. CCC/13/001303 – rev. 05

9.3.2 Internal failure detection / mitigation mechanisms

Following table summarizes the detection / mitigation mechanisms described in chapter 8.

Carrier

block

Mechanism Failure covered Blocks covered by

mechanisms

Applicable to COTS

type

Reference

Section for

mechanism

NAND

Flash card

ECC

block

ECC o Untimely or forbidden

transition of data

o Impossible transition of data

NAND Flash memory

array

o NAND Flash 8.6.5

Cores Parity and ECC o Untimely or forbidden

transition of information

o Impossible transition of

information

o Core (caches)

o Various other

memories internal to

microcontrollers

o Microcontrollers

o Multicores

8.7.3.1.3

8.8.3.1.3.1

8.8.3.1.3.2

8.8.3.3.3

8.8.3.4.3

Cores MMU o forbidden transition of address Cores o Microcontrollers

o Multicores

8.7.3.1.3

8.8.3.1.3.3

Cores Embedded

hypervisor

o Untimely or forbidden

transition of address

o Impossible transition of address

Cores o Multicores

8.8.3.1.3.4

MPX bus Detection of data

and address tenure

termination and

Retry request

o Loss of messages Cores

All peripheral blocks

connected

o Microcontroller 8.7.3.2.3

MPX bus Address and data

parity

o Untimely or forbidden

transition of information

o Impossible transition of

Cores

All peripheral blocks

connected

o Microcontroller 8.7.3.2.3

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 198 Réf. CCC/13/001303 – rev. 05

Carrier

block

Mechanism Failure covered Blocks covered by

mechanisms

Applicable to COTS

type

Reference

Section for

mechanism

information

OCeaN
TM

 Packet transfer

termination

detection

(potential)

o Loss of messages o Connected Peripherals

o DMA

o Microcontrollers

o Multicores

8.7.3.4.3

CoreNet

TM

coherency violation

and local access

error detection

o Untimely or forbidden

transition of address

o Impossible transition of address

o Initiators connected to

CoreNet
 TM

o CoreNet
 TM

 (partially)

o Multicores 8.8.3.2.3

CoreNet

TM

Retry Mechanism o Loss of message o Initiators connected to

CoreNet
 TM

o CoreNet
 TM

 (partially)

o Multicores 8.8.3.2.3

CoreNet

TM

Transaction

ordering

mechanism

o Abnormal sequence of message o CoreNet
 TM

 o Multicores 8.8.3.2.3

CoreNet

TM

ECC on buffers o Untimely or forbidden

transition of information

o Impossible transition of

information

o CoreNet
 TM

 o Multicores 8.8.3.2.3

PAMU Detection and

avoidance of

forbidden access of

peripheral to

CoreNet
 TM

o Untimely or forbidden

transition of address

o Impossible transition of address

All Peripherals connected

to a PAMU:

o DMA,

o OCeaN
TM

,

o PCIe, etc.

o Multicores 8.8.3.3.3

Table 19: summary of COTS internal detection/mitigation mechanisms;

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 199 Réf. CCC/13/001303 – rev. 05

Note: the ECC and parity on DDR memories cannot be considered strictly as internal failure detection and

mitigation means as DDR controller detect and correct errors from DDR DRAM chip. It is thus an

architectural mechanism. However, as outlined in section 5.3.3.1, it is not possible to define observation

point between DDR controller and DDR DRAM chip, the system DDR controller and DDR DRAM chip is

strongly coupled and can quasi be considered as a single system.

COTS internal detection / mitigation mechanisms can be used in the global strategy defined to cover COTS

design errors. In order to rely on these mechanisms, few conditions are identified in the following

suggestion, based on, sections 9.2.3 and 9.3.5:

COTS-

AEH_Suggestion_8.

Usage of COTS internal detection/mitigation mechanisms

During COTS design error mitigation strategy elaboration, a detection / mitigation

mechanism implemented within the COTS can be selected if

o Its triggering can be monitored during COTS functional and endurance tests;

o It can be tested by fault injections tests on COTS;

o A mechanism can be implemented in operation in order to cover its latent

failures.

9.3.3 Mixed mechanisms

Mixed mechanisms are detection / mitigation mechanisms for which failure detection is performed within

the COTS and mitigation is performed by architectural means.

Complex COTS embed different hardware accelerators that detect or concentrates failures, like PIC or

JTAG (or NEXUS) modules.

PIC (or MPIC) manages failures generated internally or transmitted via the inputs (PCIe) and controls also

the interruption critical or not on requests. In the case of a MCU, a solution is that the MCU delegates to

PIC some reset of the COTS. PIC and machine interrupts offer in general powerful possibilities for critical

interruptions: reset of one core by the MPIC, reset of one core by the other, reset of one core by itself…

Difficulties rise to use these advance features:

 The complex configuration of these blocks (see subsection 8.8.3.5)

 Asynchronism:

o Non Maskable critical IT rely in large part on external events so that internal COTS

functioning should be disturbed by asynchronous external disturbance,

o Synchronism has to be ensured at computing platform level. This could not be longer

ensured in case of local reset by a MPIC or by a Core machine check.

Due to these reasons the proposed solution consists in the capture of PIC status by an external device (e.g.

PLD) that takes decision about the action on the COTS in coherency with the state of the computing

platform.

It result from this argument the following type of detection mitigation:

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 200 Réf. CCC/13/001303 – rev. 05

Principle

An Interruption Request (IRQ) is received by the MPIC (see for instance Figure 93) and is captured by an

external device that takes a sanction in order to mitigate the detected failure.

Failure covered

The internal failures covered depend upon the IRQ raised.

A variant of this mechanism can be operated by monitoring the Debug block. This block offers JTAG or

Nexus diagnostic capabilities during development, fabrication or maintenance tests. During operation, it

scans the COTS blocks non-intrusively. Its output could be captured by an external device in order to

perform fine diagnostics of the COTS and take appropriate sanction.

COTS-

AEH_Suggestion_9.

Usage of COTS internal detection mechanisms

During COTS design error mitigation strategy elaboration, a detection /

mechanism implemented within the COTS (such as PIC or JTAG blocks) can be

selected if :

o Its triggering can be monitored during COTS functional and endurance tests;

o It can be tested by fault injections tests on COTS;

o A mechanism can be implemented in operation in order to cover its latent

failures.

In this case, mitigations should be applied by an external device.

PIC and Debug exploitation are interesting means to manage errors generated internally to the complex

COTS, but do not allow full coverage of the internal errors generated. The possibility of common points

between the initial error and the detection mean may be also keep in mind.

9.3.4 Architectural mechanisms

9.3.4.1 Monitoring of outputs

Outputs described in Chapter 7 offers possibilities of local monitoring that have to be considered. It is

necessary to remain aware that this monitoring cover in general only the lower layers of the interfaces and

that they do not give accesses to the buried blocks. This general remark has sometime to be modulated as it

is discussed in following subsections. The general model can be depicted as followed (Figure 105). It leads

to the following suggestion:

COTS-

AEH_Suggestion_10.

Usage of COTS output monitoring

During COTS design error mitigation strategy elaboration, if a detection

mechanism based on COTS outputs monitoring is used

o The detection principle should be specified to the message receiver;

o The message receiver monitoring implementation should be tested in

integration tests (*);

o A mechanism can be implemented in operation in order to cover detection

mechanism latent failures.

(*) the test can be done at board, LRU or system level, depending on the receiver.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 201 Réf. CCC/13/001303 – rev. 05

Figure 105: COTS Output monitoring

9.3.4.1.1 Discrete I/O

As already described, a discrete I/O does not embed intrinsically failure mitigation mechanisms.

Some COTS design can implement read back monitoring. In this case the sent value is monitored and

stored in a status register (Figure 106). This status register has to be compared to the command register by

an internal arbiter (can be the PIC, a core or a Debug module). We are in this case in the “degenerate case”

of Figure 105.

Such a mechanism can is not systematically implemented by COTS. When it is so it should be exploited in

order to cover:

 Untimely or forbidden transitions,

 Impossible transitions.

Note: As explained in subchapter 7.2 these two modes are the only one admissible for discrete I/O.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 202 Réf. CCC/13/001303 – rev. 05

Figure 106: Discrete I/O read back monitoring internal to COTS

When it is not implemented internally it can be created between an output and an input of the COTS,

Figure 107 (a), or some redundancy between two I/O, Figure 107 (b).

Figure 107: External read back monitoring (a) and redundancy (b) for Discrete I/O

In the redundancy case it is important that the two command registers are filled as independently as

possible in order to avoid common point. If it is realized the coverage claimed can largely overtake the

Discrete I/O interface block.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 203 Réf. CCC/13/001303 – rev. 05

COTS Output Mechanism Failure covered Blocks covered Section

Discrete Read back

monitoring

untimely transfer of messages

Loss of message

Untimely transfer of message

Untimely or forbidden

transition of information

Impossible transition of

information

Discrete interface

block

Buried blocks (less

buried than the

detection block)

7.2

Discrete Signal redundancy Loss of message

Untimely transfer of

information

Untimely or forbidden

transition of information

Impossible transition of

information

Discrete interface

block

Buried blocks (less

buried than the last

common block)

7.2

Table 20: summary of detection/mitigation mechanisms on discrete output

9.3.4.1.2 Serial Peripheral Interface

Two mechanisms are described in section 7.3.

 Detection of overclock pulses by slaves,

 Parity bit encoding by master.

COTS Output Mechanism Failure covered Blocks covered Section

SPI detection of extra

CLK pulses

(optional)

untimely transfer of messages

(partly)

SPI block

CLK

7.3

SPI Parity encoding by

master

Untimely or forbidden

transition of information

Impossible transition of

information

SPI block

(partially)

7.3

Table 21: summary of detection mechanisms on SPI

Complementary electrical detection mechanisms can be added at physical level. At higher levels end-to end

mechanisms (see subsection 9.3.4.3) can be implemented on SPI.

9.3.4.1.3 ARINC 429

ARINC 429 implements physical and data link layers mechanisms that can be exploited in order to monitor

the signal generated by a COTS in the framework of output monitoring depicted on Figure 105.

The detection of deviation from characteristics described in section 8.3.4 can be performed:

 At physical layer: electrical, signal shape, signal timing… This monitoring can prevent against some

drift that could at the end lead to “loss of information”.

 At data link layer: Parity bit;

 At higher layer: some special error detection can be implemented by Operating System or even at

applicative layer. In particular a coherency check can be performed between:

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 204 Réf. CCC/13/001303 – rev. 05

o Sign/Status Matrix (SSM) bit field;

o Source/Destination Identifier bit field;

o Interface Control Document (ICD) predefined label and data format for different emitter types

(industry standard).

The following table summarises this analysis:

COTS

Output

Mechanism Failure covered Blocks covered

(of emitter)

Section

ARINC 429 Rejection of physically non

conform message

Untimely or forbidden

transition of information

Impossible transition of

information

ARINC 429

block

7.4

ARINC 429 Configurable Parity Bit

encoding and check

Untimely or forbidden

transition of information

Impossible transition of

information

ARINC 429

block

7.4

ARINC 429 Detection by high level layers

of receiver of incoherency

between

- Sign / Status Matrix

(SSM) bit field
- Source/Destination

Identifier bit field
- ICD predefined label

and data format for

different emitter types

(industry standard).

Untimely or forbidden

transition of address

Impossible transition of

address

ARINC 429

block

Buried blocks

7.4

Table 22: summary of detection mechanisms on ARINC 429

9.3.4.1.4 MIL-STD-1553

Embedded mechanisms of MIL-STD-1553 are exploitable in different layers, in the framework of “output

monitoring” depicted on Figure 105.

 At physical layer: Detection by the receiver of signal characteristic deviations (NRZ, Manchester

structure and characteristic timings), allows detecting word loss situations and untimely, forbidden or

impossible transition of information due to physical layers. Higher layers errors are not covered as they

do not manipulate electrical encoded signal but bits.

 At Data Link Layer: Section 7.5.4 lists the protocol elements which deviation should be monitored in

order to detest an abnormal behaviour from one of the elements.

The Bus Controller remains the master of the bus so that its diagnostic should only be performed by itself.

Some Additional mitigation can get round this problem:

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 205 Réf. CCC/13/001303 – rev. 05

 MIL-STD1553 accepts the redundancy of BC if and only if only one speaks at each time on the bus.

This do not solve the problem of BC error detection;

 It is conceivable to use a “Bus Monitor”
58

 as an independent item that could then monitor the health

of the communication on the bus and take a sanction on the BC if necessary.

The following table summarises this analysis:

COTS Output Mechanism Failure covered Blocks covered

(of emitter)

Section

MIL-STD-

1553

Detection of NRZ

violation

Loss of message MIL-STD-1553

block

7.5

MIL-STD-

1553

Detection of

Manchester encoding

violation

Impossible transition of

information

MIL-STD-1553

block

7.5

MIL-STD-

1553

Redundancy of MIL-

STD-1553 lines

Loss of message

Untimely transfer of message

Abnormal sequence of

message

Untimely or forbidden

transition of information

Impossible transition of

information

MIL-STD-1553

block

More buried blocks

7.5

MIL-STD-

1553

Parity bit encoding Untimely or forbidden

transition of information

Impossible transition of

information

MIL-STD-1553

block

7.5

MIL-STD-

1553

Detection of violation

of message type or

format

Untimely transfer of message

Untimely or forbidden

transition of information

(partially)

MIL-STD-1553

block

7.5

MIL-STD-

1553

Detection of violation

response time slice

Untimely transfer of message

(including advanced

responses and babbling)

MIL-STD-1553

block

More buried blocks

7.5

Table 23: summary of detection mechanisms on MIL-STD-1553;

9.3.4.1.5 PCI Bus

Embedded mechanisms of PCI (described in section 7.6.3) can be handled at various levels.

At data link layer in particular,

 the Parity can protect against untimely or forbidden transition and impossible transition. However

this parity protect only from these modes when they are generated by lower layers (after the

encoding of parity and before its decoding);

 the master abort mechanism protect efficiently against loss of messages due to slave error. The

master remains critical.

58 In principle BM is dedicated to performance monitoring of the bus and not to error detection.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 206 Réf. CCC/13/001303 – rev. 05

The following table summarises this analysis:

COTS Output Mechanism Failure covered Blocks covered

(of emitter)

Section

PCI Parity Untimely or forbidden

transition of information

(partially)

Impossible transition of

information (partially)

PCI block

(partially)

7.6

PCI Detection of delayed

answer and Master

abort

Loss of message

Untimely transfer of message

(delayed)

PCI block

More buried blocks

7.6

Table 24: summary of detection mechanisms on PCI;

Additional mechanisms can be defined to protect generation and consumption of PCI messages. These

mechanisms take place at higher layers and are tackled in next sections.

9.3.4.1.6 PCIe bus

As described in the PCIe subchapter, PCIe is a very robust network with several embedded mechanisms in

particular at Data Link and transaction layer. They protect very efficiently from various modes in the lower

layers

a. A Sequence number encoded at physical layer (not described in 7.7.4) protect against

untimely transfer of message (babbling) and abnormal sequence of messages at physical

layer;

b. ECRC protect against untimely, forbidden and impossible transition from emitter

transaction layer to receiver transaction layer;

c. LCRC protect against untimely, forbidden and impossible transition from emitter Data Link

layer to receiver Data Link layer;

d. Frame Re-transmission and in particular Acknowledgement mechanism prevent against loss

of frame from DLL to DLL and also against untimely transfer of messages (delayed);

e. Adjacent Device’s Memory Availability and flow management complementary protect

against loss of frame ad DLL.

Adjacent Device’s Memory Availability and flow management by managing the internal

buffers of receiver PCIe block primarily prevent the loss of message that could be sent to

this block while it is busy. Its classification in the present category of mechanisms should be

understood in the following sense: internal detection (detection by the COTS that its buffers

are near full) and architectural mitigation (mitigation by the emitter by delaying the

sending).

In a microcontroller all of these mechanisms status are accessible through PIC that can have some status of

health of PCIe connection.

The following table summarises this analysis:

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 207 Réf. CCC/13/001303 – rev. 05

COTS Output Mechanism Failure covered Blocks covered

(of emitter)

Section

PCIe Sequence number

decoding

Untimely transfer of message

(babbling)

Impossible transition of

information (partially)

Abnormal sequence of

message

PCIe blocks

(partially)

7.7

PCIe ECRC decoding Untimely or forbidden

transition of information

Impossible transition of

information

PCIe blocks (up to

TL)

7.7

PCIe LCRC decoding Untimely or forbidden

transition of information

Impossible transition of

information

PCIe blocks (up to

DLL)

7.7

PCIe Acknowledgement

and retry mechanisms

Loss of message

Untimely transfer of message

(delayed)

PCIe

More buried blocks

7.7

PCIe Detection of receiver

buffer over load (flow

management)

Loss of message PCIe

Table 25: summary of detection mechanisms on PCIe;

9.3.4.1.7 Periodic frame monitoring

In addition to previous monitoring on each output type, it is usual in the case of buses and network with

periodic frame, word, transactions identified (exclude SPI) to scan the arrival of frames. Depending upon

the admissible latency, the status of loss of frame can be declared after non detection of 1 to 3 frames.

Principle

The frame reception is confirmed on few frames (typical value 3).

If a frame is not received the receiver operates a transition in a wait state with a temporary backup mode (in

general the last valid value received).

If after the confirmation time span no frame is received, the applicative layer is informed and is responsible

to define a sanction.

Failure modes covered
This mechanism is mainly dedicated to coverage of loss of messages failure mode.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 208 Réf. CCC/13/001303 – rev. 05

9.3.4.2 Configuration monitoring

Has already studied in various sections, many COTS configuration registers are very critical. Tests should

show that modification of COTS feature behaviours can only be due to configuration change and not to

untimely changes due to physical effects without register corruption (consider section 9.2.3.3).

A classical way of doing is to store a complemented to 0 value of the useful configuration (mirror

configuration) in memory and periodically check that the sum of the configuration and of the mirror

configuration give 0.

This can be done by the COTS when it has computation resources (microcontroller) or by an independent

item when the COTS has no computation resources (e.g. a bridge). In the first case, if the configuration

check is realized by the microcontroller itself, the mechanisms should be complemented by a health

monitoring of the microcontroller in order to avoid that an untimely or forbidden change of the MCU

configuration stop every capabilities to check the configuration.

If such a complementary mechanism cannot be in place in a fault tolerant time interval delay then the

monitoring of configuration by an independent item (see subsection 9.3.4.4) could be preferred.

9.3.4.3 End to End protection

9.3.4.3.1 Principle

End to end protection aims at protecting data exchanged from higher level in the emitter to higher level in

the receiver. This encoding can be performed by the Operating System or by the application. It is

applicable to the exchange of data computed by a microcontroller and another item that can be either a

microcontroller or a PLD.

COTS-

AEH_Suggestion_11.

Periodic frame monitoring

During COTS design error mitigation strategy elaboration, if a periodic frame

monitoring mechanism is used in the framework of COTS output monitoring:

o The latency induced by the confirmation time should be considered.

COTS-

AEH_Suggestion_12.

COTS configuration monitoring

During operation, any change in COTS critical configuration registers should be

detected by a periodical monitoring.

This monitoring may be tested in order to avoid latent faults except if the default

configuration of unused blocks or features is showed to be innocuous.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 209 Réf. CCC/13/001303 – rev. 05

Consider the communication between to applications as represented on Figure 108.

Depending upon the type of failure to cover, end-to-end protection can encode on each transaction at

highest possible level (Figure 108):

 CRC,

 process counter,

 Dating for non-periodic transactions.

9.3.4.3.2 Detailed presentation

Encode/decode in higher layers covers the different internal block that are crossed by the transaction.

Moreover, a bridge (for instance) situated between the emitter and the receivers is also covered by the

mechanism.

 An information signature (for instance a CRC) guarantees that the information covered are not

corrupted when they cross the different blocks.

 The Process counter labelled each transaction (modulo an integer n) and thus guarantees that these

transactions are present in the right order in the receiver.

 Dating can be added if untimely transfer of message failure mode has not been excluded by other

means.

o For periotic transactions that are waited by the receiver in certain time slice, it is easy to

determine if there are too many transactions (babbling) or if the transaction is late (delayed).

In this case the ²dating of transactions is useless;

o For non-periodic transaction that can be transmitted anytime, the dating allows knowing at

which time it has left the top layer of emitter and if it has been delayed. This is of particular

importance in the case of bridges crossing that can delay transactions in some buffers.

Figure 108: Principle of end-to-end protection (optional dating has not been represented).

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 210 Réf. CCC/13/001303 – rev. 05

This mechanism is particularly efficient. In its refined version (CRC, process counter, dating) presented

here it deals with difficulties for tuning of dating as its exploitation request synchronization between the

emitter and the receiver. This synchronisation is difficult to realize.

It has to be noted that end-to-end protection, despite of its efficiency, is not local to a computing platform

and thus does not respect the proposal of COTS-AEH_Suggestion_7. Indeed considering the

communications depicted on Figure 104, the COTS is implicated also on inter LRU communication. A full

end-to-end encodes protections of the message at operating system level in a part of a message that have to

be decoded only by the final receiver. This final receiver is for a majority of messages of interest on

another LRU.

Despite of this status, end-to-end protection should be considered in complement to local mechanisms.

There are two way to use weakened local versions of end-to end, both with advantages:

 Local end-to-end: Encode protection at a level that is decoded by a local device. This protection is of

the type of LCRC encoded in DLLP of PCIe. The local receiver can be the next device on the line or a

more distant device, if a refined encapsulation is defined. For instance, in this case, this mechanism can

cross a bridge and cover very efficiently its failures. Nevertheless, this mechanism covers fewer failures

than the pure end-to-end.

 Sampled end-to-end: Generate special frames with real data sent periodically to a local device address

and encoded from end-to-end. In this case it is very easy to address a particular device that is not

necessarily the next one on the line. The coverage of this mechanism is fully satisfactory like pure end-

to-end but the protected sample is not 100%.

Note that the three variants (full End-to-end, local end-to-end and sampled end-to-end) are not exclusive

and can be implemented simultaneously.

End-to-end protection has been extensively use in CAN communication in automotive world.

When applied at sub-applicative (operating system) on all information of all messages, this mechanism

impacts performances. This impact should be determined.

COTS-

AEH_Suggestion_13.

End-to-End protection

During COTS design error mitigation strategy elaboration, if an end-to-end

protection mechanism is defined in order to detect COTS design error,

o It should be encoded in COTS higher layers (applicative or higher Operating

system layers)

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 211 Réf. CCC/13/001303 – rev. 05

9.3.4.3.3 Failure modes covered

The status of such a mechanism on the basic failure modes use in this report is detailed in Table 26

Failure mode Sub class of failure mode Mitigation argument

Loss of message The process counter detect the loss of m<n

consecutive transactions

Dating or periodic frame detection allows

detecting message loss.

Untimely transfer of

message

Babbling

Delayed message

By time slice in the case of periodic

transactions and by dating for non-periodic

transactions.

The Process counter can detect babbling

caused by lower layers.

Abnormal sequence of

message

 The process counter detects the abnormal

sequence of an arbitrary number of

transactions except the cyclic permutation

modulo n.

Untimely or forbidden

transition

Untimely transition of data

Untimely transition of address

(emitter or receiver)

Forbidden transition of address

(emitter or receiver)

Covered by the data and address signature

Impossible transition Impossible transition of data

Impossible transition of

addresses

Primarily covered by the process counter

Covered by the data and address signature

Table 26: coverage of end-to-end protection

9.3.4.4 External independent monitoring on the data path

9.3.4.4.1 Principle

The global principle of monitoring described here is applicable between a MCU or a Multicore and an

external item independent from this microcontroller.

The basic principle of this detection/ mitigation mechanism is for the external item to challenge the

microcontroller with some question and to compare the microcontroller answer with its own answer. In

case of discrepancy between both answers, the external independent item applies a sanction to the

microcontroller. In order to be efficient, the monitoring should be implemented on the operational data

path.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 212 Réf. CCC/13/001303 – rev. 05

9.3.4.4.2 Detailed presentation

In more details, the detection and mitigation mechanism is realised by a monitoring partition (MON) of the

MCU. When running,

(1) the MON partition solicited the external independent item that store a test pattern,

(2) the external independent item deliver the data and on its side perform the calculation
59

,

(3) MON activate various resources of the COTS (PCIe, DMA, Interconnect, L3, DDR controller,

DDR) in order to store in test data in DDR,

(4) MON get the data in DDR and perform the computation,

(5) MON release the result to the external independent item,

(6) the external independent item monitors the arrival of MCU result, compare its own results with

MCU result and

(7) the external independent item takes adapted sanction.

In this process, the test pattern is of crucial importance. Its choice can strongly influence the coverage of

the global mechanism. It is proposed to implement several tests patterns with different types of instruction

to perform and different data type to process.

Several variants of this mechanism may be defined.

 Previous principle can be applied to the monitoring of complex COTS (e.g. bridges) without

computation capabilities in different cases

o The mitigated COTS is on the data path between the microcontroller and the independent

item (see the block “Other COTS (e.g. Bridge)” on Figure 109);

o the monitored device could be inserted on the data path between two independent items or

o the test patterns could be adapted to some automatic response request (such as posted

message in PCIe).

 Application to Multicore processors offer two possibilities:

o Simple duplication of the error detection / mitigation loop. In this case MONn running on

Coren realises the previous process independently of any context. Test data are refreshed

between MONn and MONn’. Computation resources of the independent item have to be

checked, avoiding conflict when two MON request it at the same time.

o Coherent duplication of the loop. In this case the independent item keeps the same test data

in order for each MON partition to use the same data set. The independent item can then

compare its result with the n core results and take adapted sanction that could be a reset of

the complete platform when all the cores agree against it.

 The independent item can be a COTS so that the mechanisms is implemented between two COTS (A

and B) with crossed mechanisms (A solicit B and B solicit A). In this case however the sanctions

scheme as to avoid paradox of Byzantine generals and should be study carefully. This can be solved if

one of the COTS is simpler that the other one.

59 It is possible that the test pattern result is already stored within the tier of confidence.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 213 Réf. CCC/13/001303 – rev. 05

Figure 109: Static view of an example of error detection / mitigation by an independent item on the data path.

Note: the redundancy with a voter is a mitigation mechanism different from the monitoring described here.

In such mechanism the applicative computation performed by the COTS of interest (primary computation

channel) is performed in a simplified way in a secondary computation channel, dissimilar from the

principal. This second channel can be ensured by a COTS microcontroller but in general simpler from the

first one. A third actor checks the plausibility of the primary channel computation and takes the appropriate

sanctions. This mechanism is performed not on sampled data but in the computation flow.

COTS-

AEH_Suggestion_14.

Monitoring by an external independent item on the data path

During COTS design error mitigation strategy elaboration, if a monitoring by an

external independent monitoring on the data path is defined in order to detect

COTS design error,

o The data and applied function should be chosen carefully;

o The periodicity of the monitoring should be considered according to the fault

tolerance time interval of the system.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 214 Réf. CCC/13/001303 – rev. 05

9.3.4.4.3 Summary of failure modes covered

The status of such a mechanism on the basic failure modes use in this report is detailed in Table 27.

Failure mode Sub class of failure mode Mitigation argument

Loss of message In case of loss of message by one of the

COTS or COTS blocks on the data path, a

simple monitoring of incoming frame

reception can detect this mode.

Untimely transfer of

message

Babbling

Delayed message

Independent item should receive limited

number of messages from the MON partition

during the time slice. In this time slice

multiple receptions can track a babbling and

delayed reception can be monitored.

Abnormal sequence of

message

 In the basic mechanism, too few messages are

received from the MCU to check an abnormal

sequence. More elaborated version may

include it but necessitate more exchanges.

Untimely or forbidden

transition

Untimely transition of data

Untimely transition of address

(emitter or receiver)

Forbidden transition of address

(emitter or receiver)

The mechanism is dedicated to the research

of such failure.

 If data is modified, the result of

comparison will be wrong.

 If address is modified and the

communication is done via a network the

result will never reach the Independent

item and result will be considered as lost.

 If address is modified and the

communication is done via a bus the

result will never reached the correct

address zone of the independent item and

result will be considered wrong.

Impossible transition Impossible transition of data

Impossible transition of

addresses

As test data are refreshed, impossible

transition of data will be systematically

detected.

In the basic mechanism, with only one test

pattern, an address stuck could not be

detected. However In case of communication

via a bus it is possible to refine this simple

mechanism, considering that the test result is

sent alternatively to two different zones of the

independent item memory.

Table 27: coverage of detection / mitigation loop

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 215 Réf. CCC/13/001303 – rev. 05

9.3.4.5 Watchdog and time monitoring

Watchdog can be implemented either as COTS features or as architectural means. We will concentrate here

on architectural watchdog
60

. In this case detection is performed by the watchdog that is not refreshed after

the correct period and it realises also the mitigation. Architectural watchdogs are various and more or less

sophisticated
61

. Two typical examples are presented hereafter.

9.3.4.5.1 Basic watchdog

Principle

A basic watchdog is a mechanism refreshed periodically by the device controlled. If the watchdog is not

refreshed after a maximal delay, the watchdog enforces a safe state or procedure for instance a reset order

to the device.

Note: the term “device” is employed because use of watchdog is more general than MCU.

This mechanism is in particular dedicated to cover global failures. Avionics watchdog have an independent

clock from the device clock.,

COTS-

AEH_Suggestion_15.

Monitoring by a Watchdog

During COTS design error mitigation strategy elaboration, if a monitoring by a

watchdog is defined in order to detect COTS design error,

o Independence between the watchdog and the monitored device should be

assessed (e.g. independent clock reference).

Failure covered

This mechanism is dedicated to cover Loss of messages and Untimely transfer of messages (delayed)

considering that a device that cannot refresh its watchdog cannot correctly function.

A basic watchdog with refresh period configured as closed as possible of the time frame could detect a real

time drift.

9.3.4.5.2 Time Windows-based watchdog

Principle

A Time Windows based watchdog is a mechanism refreshed periodically by an operating system or by

applicative software, at some program step. If the watchdog is not refreshed in a precise time-slice, the

watchdog detects misbehaviour and enforces a safe state or procedure for instance a reset order to the

software or to the hardware.

Failure covered

This mechanism is dedicated to cover Loss of messages and Untimely transfer of messages (delayed and

advanced) due to time drift.

60 Subject to obtain data necessary to assess the independence between an internal watchdog and the blocks it
monitors, internal watchdogs could become admissible mechanisms
61 Most sophisticated watchdog can be comparable to the monitoring by a tier of confidence studied in preceding
section.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 216 Réf. CCC/13/001303 – rev. 05

9.3.4.6 Mechanisms for memories

In addition to ECC and parity defined on memories it is possible to add some other mechanisms like CRC,

Check sum or data mirroring. These mechanisms are in general implemented at applicative level or by the

Operating System. They should be limited to critical data or blocks of data. Their end-to-end nature

guarantees the integrity of the transfer from the memory up-to the core when the ECC guarantees only the

storage in the memory and the transfer from memory to the memory controller.

Consider for instance the transfer from an EEPROM to a DRAM and then to the core. A Power-on Built in

Test (PBIT) verify that the DRAM is able to host the software, then the ECC is added in the transfer from

EEPROM to DRAM in order to guarantee the forthcoming transfer from DRAM to the DRAM Controller.

Additional mechanisms can be added in order to guarantee that the DRAM executed program is the same

that the program initially loaded in EEPROM (for instance CRC).

9.3.4.6.1 Checksum

Principle

A block of memory containing critical data is processed by the initiator of data storage (in general the

processor), prior to the write operation, through a given operation on the data. The result is stored in

memory. When the data is read the same computation is performed by the target of data and the result is

compared with the initial checksum. In case of detection of discrepancy between both values, the target

takes a sanction. Please see [26] part 7 for further extension.

Note: the checksum should be stored as far as possible from memory zone where the data are stored even

when possible on another page or memory module.

Failure covered

Checksum covers errors of the complete chain between the encoding block and the decoding block. It

participates to an end-to-end mechanism applied to memory.

Failure modes covered are:

o Untimely transfer of message (advanced)

When generated by the memory controller;

o untimely and forbidden transition of data and addresses;

o Impossible transition of data and addresses.

9.3.4.6.2 Cyclic Redundancy Check

Principle

Cyclic Redundancy Check (CRC) is a bit position dependant checksum. The block of memory containing

critical data is processed through a polynomial division by a given polynomial. The rest of this division

(CRC signature) is stored in a memory. When the block of data is read the CRC is computed and compared

with the stored value. Discrepancy between encoded and decoded CRC detect failures on data or addresses.

The decoder entity can then take a sanction and mitigate the error. Please see [26] part 7 for further

extension.

Note: the CRC signature should be stored as far as possible from memory zone where the data are stored

even when possible on another page or memory module.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 217 Réf. CCC/13/001303 – rev. 05

Failure covered

CRC covers errors of the complete chain between the encoding block and the decoding block. It

participates to an end-to-end mechanism applied to memory. The interest of this mechanism compared to

the ECC is that it covers also the buried blocks of the COTS that initiate the write and/or the read

operations.

Failure modes covered are:

o Untimely transfer of message (advanced)

When generated by the memory controller;

o untimely and forbidden transition of data and addresses;

o Impossible transition of data and addresses.

9.3.4.6.3 Data Mirroring

Principle

When a critical data is written in memory a complement to 0 of this data is written in another zone of

memory (another page or another module). When this data is requested the data and its mirror are read in

memory. A sum of data and its mirror is performed before to use the data. If the result is 0 the data is

correct, if not it is rejected.

This method has the advantages to detect 100% of data corruptions, to localize the error and to lead to

simple computation (complement to 0, sum). It consumes more data space than Checksum and CRC so that

it is in general use for some individual critical applicative data and not blocks of data.

Failure covered

Failure modes covered are:

o Untimely transfer of message (advanced)

When generated by the memory controller;

o untimely and forbidden transition of data and addresses;

o Impossible transition of data and addresses.

The following suggestion is applicable to the three preceding mechanisms.

COTS-

AEH_Suggestion_16.

Error mitigation of memories and memory controllers

During COTS design error mitigation strategy elaboration, if a memory monitoring

based on information addendum (Checksum, CRC, data mirroring) is defined,

o The information added should be segregated as much as possible from the

protected data.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 218 Réf. CCC/13/001303 – rev. 05

9.3.5 Monitoring Mechanisms for latent failures

9.3.5.1 General principle

Mechanisms described in the preceding sections are dedicated to detection and mitigation of failures

caused by design errors. These mechanisms can themselves be affected by different type of failures:

 Systematic design errors or specification failures,

 Random hardware failures, radiation initiated failures (e.g. SEU) or manufacturing systematic

failures.

On first side, systematic design and specification failures of detection / mitigation mechanisms should be

revealed during fault injection tests (see subsection 9.2.3.4).

On second side, periodic monitoring should be defined in order to guarantee that detection and mitigations

means are not inoperative due to some failure (typically random failures). This monitoring is typically

performed at Power-On.

COTS-

AEH_Suggestion_17.

Avoidance of latent failure of detection / mitigation mechanisms

During COTS design error mitigation strategy elaboration, if a detection and/or

monitoring mechanism is defined in order to detect COTS design error,

o this mechanism should be monitored in order to keep latent failures under

control;

unless it is shown that the defined mechanism

o is free of design error,

o is sufficiently reliable.

9.3.5.2 Example: protection of microcontroller internal memories

Microcontroller caches: L1, L2, L3, TLB (MMU cache), PAMU Cache are in general protected by ECC

and/or parity [62]. In the same manner and DDR controllers support ECC that is the principal failure

mitigation available on DDR.

In order to outline the possibilities of these mechanisms, consider for instance ECC on the L3 Cache (CPC)

of P4080.

An error detected on a data stored in CPC will be signalled by some signal in CPC Error Register
MULLERR (Multiple CPC ERRors) ([33], 8.3.1.3). If the error is not correctable or if the error is

correctable but the error counter has reached its maximum value, a machine check interrupt (directly to the

core) is generated for the operating system in order to notice and handle the error.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 219 Réf. CCC/13/001303 – rev. 05

Attention has to be paid to the fact that error reporting and handling are configurable in the CCSR (CPC

ERRor INTerrupt ENable register: CPCERRINTEN).

Single errors are corrected by ECC on the data transmitted. Action to be taken has to be taken by the CPU

under dedicated privilege mode: supervisor or hypervisor depending of the processor type. Operating

System is in charge to correct the error also in the cache and to restore the error reporting register.

This example can be, in its principle, generalized to other cache and memories.

Freescale microcontrollers propose a particular feature that allows checking ECC or Parity correct

behaviour by injecting errors in memories. This operation is crucial to test before each operation the

validity and the correct settings of the integrity protection mechanism
62

 and is typically implemented in

Power-on Built-In-Self Tests (PBIT). It has of course to be operated carefully and adequate measures

should be taken in order to forbid its triggering during flight.

In parallel to these mechanisms, in order to reduce the exposure to cache errors, periodic flush of cache can

be operated [62]. This mechanism is in general dedicated to cover SEU induced failures.

62 By integrity protection mechanism we mean a mechanism allowing the detection and mitigation of failure like
untimely, forbidden or impossible transition of information.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 220 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 221 Réf. CCC/13/001303 – rev. 05

10 CONCLUSION AND RESULT SUMMARY

This chapter aims at supplying a critical summary of the method, the applicability of its various elements

and finally giving some highlights to try to define one or several stop criteria.

Indeed, no stop criteria can be definitely defined: information provided in this document is designed to

enlighten the complex COTS mastering concern. This information should then not be considered as

obligations for industrials to qualify COTS on equipment.

.

10.1 SUMMARY OF REPORT ACTIVITIES

At this stage of the study, it is necessary to bring a critical viewpoint on the process followed and the

results obtained. The preliminary step of breakdown and abstraction levels will be broached then the

general method will be summarized.

10.1.1 Breakdown and Abstraction levels

The present study is firstly based on the choice of some breakdown and abstraction levels. This choice is

crucial and provides the framework for the complete study.

It has been chosen to work both at black box level and at grey box level. Grey box is a black box refined

breakdown level, built with fragmentary, non-contractual and potentially under NDA information.

 Black box level allows identifying external media in relations (e.g. bus and networks), the

interfaces type and having a clear vision of the functions of the COTS – its responsibilities with

respect to its context.

 Grey box allows having some insights in its constitution and intrinsic failure modes.

At both breakdown levels, logical abstraction level appears to be the best compromise between generality

of functional level and the too great details of physical level. Nevertheless, functional level has been used

for determination of COTS functions at black box level and of blocks functions at grey box level. Inroads

at physical level have been conducted on the basis of logical level failure modes for refinement of some

failure mechanisms (e.g. TTL, clock failure modes, etc.).

10.1.2 Global analysis process

The process deployed in this report fit into this framework and relies on different patterns and methods:

- The choice of a failure model at Logical level;

- A preliminary black box description focusing on COTS output with

o Description of considered outputs;

o Analysis of COTS output failure modes;

o List of I/O integrated detection/ mitigation mechanisms;

This approach provides a view on COTS internal failure mode from the point of view of one

output failure mode.

- A second approach at grey box level with

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 222 Réf. CCC/13/001303 – rev. 05

o Choice of an architecture;

o Description of considered blocks;

o Analysis of COTS block failure modes;

o List of internal detection/ mitigation mechanisms;

This approach provides a view on COTS internal failures that can impact various outputs.

Grey box approach appears important in order to understand as finely as possible the internal

behaviour of the COTS, its logical structure (block breakdown). Its physical structure remains

in general non accessible. The analysis of various families of COTS suggests that some few

patterns could generate most of the systematic failures.

 The use of tests and the determination of mitigation means, split in three categories:

o Mechanisms relying on internal mitigation means of the COTS;

o Mixed mechanisms relying on internal COTS detection means and on external mitigation

means;

o Mechanisms fully relying on architecture means for detection and mitigation63.

Failure model is a crucial pattern use in the study, its comprehensiveness is crucial because a missing

failure mode may cause the invalidation of the analysis at both black box and grey box levels and the

judgement on the detections mechanism coverage. At grey box level, the selection of COTS internal

architecture appears also to be a tactical choice for the relevancy of failure analysis.

10.2 IMPLEMENTATION STRATEGY PROPOSAL

Definition of a stop criterion in this framework could be:

What are the necessary elements of proof to be brought in order to ensure

that a COTS usage does not present unacceptable risk in an avionic context?

The present report is not intended to bring a solution to this problem, it allows however to draw some

tracks
64

.

Two axes are suggested by the previous formulation:

 the reliability, when it is possible to guarantee that no error can occur and

 the mitigation of the errors when that is not possible.

It seems clear in the progress of the report that a COTS is an aggregate of blocks or IP (Intellectual

Properties) in interaction. The complexity of the COTS arises from the complexity of the interaction of

these IP (let us consider for example the interactions of a PCIe block with a DMA) and with the complexity

63 These detection/ mitigation techniques are varied and only a representative panel is depicted here. For this reason
only recommendations and good practices were provided within the report and no suggestions for complementary or

amendments to EASA guidance as requested in subchapter 2.2.

64 Indeed, for random failures, the stop criterion is provided by probabilistic targets [1], for in-house developed
component the stop criterion is provided by a development effort linked to the Design Assurance Level [4]. However,
no standardize criterion exist in order to determine if the study of a COTS design is sufficient or not for a given DAL.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 223 Réf. CCC/13/001303 – rev. 05

of these IP themselves (let us consider for example an interconnect block). This fundamental complexity is

amplified by an impossibility to know the details of the functioning of some of these IP and their detailed

interactions.

Black box tests in general and endurance tests in particular allow going through a large number of

interactions on the COTS and thus through particular activation of the IP and their interactions.

These tests turn out to be powerful tools to demonstrate the reliability of some IP. It is in particular the case

for the simple IP in interface with COTS environment (let us consider for example SPI controller) and

maybe in the case of complex IP in simple interaction with other blocks.

For the IP, which complexity or interactions, do not allow to guarantee the reliability by the test, a grey box

study turns out to be necessary. The type of studies developed in chapter 8 allows defining the failures of

the considered IP and their impact on the COTS outputs.

Some of these errors can arise from tests, from errata, or being considered as possible considering the

accessible elements of the IP design.

Mechanisms such as those proposed or alternative ones allow protection against these failures (primary

mechanisms). These primary mechanisms detect and mitigate failures that could directly impact safety.

Primary mechanisms should themselves be tested during development (fault injection tests) and be

periodically monitored in operation in order to avoid latent failures.

Secondary mechanisms should be defined to prevent primary mechanisms from adverse deactivation

caused by systematic error or random fault.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 224 Réf. CCC/13/001303 – rev. 05

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 225 Réf. CCC/13/001303 – rev. 05

11 REFERENCES

[1] EUROCAE & SAE, ED-79A/ARP-4754A: Guidelines for Development of Civil Aircraft and

Systems, European Organisation for Civil Aviation Equipment (EuroCAE) & Society of Automotive

Engineers (SAE), 2010.

[2] EUROCAE & RTCA, ED-12B / DO-178B: Software considerations in airborne systems and

equipment certification, 1992.

[3] EUROCAE & RTCA, ED-12C/DO-178C: Software Considerations in Airborne Systems and

Equipment Certification, January 2012.

[4] EUROCAE & RTCA, ED-80/DO-254:Design Assurance Guidance for Airborne Electronic Hardware,

April 2000.

[5] EASA, "EASA CM - SWCEH – 001 Iss. 1 Rev. 1: Development Assurance of Airborne Electronic

Hardware,," 9th Mar. 2012.

[6] F. Faubladier et D. Rambaud, «EASA.2008/1, 2008: SoC Survey Report - Safety Implications of the

use of system-on-chip (SoC) on commercial of-the-shelf (COTS) devices in airborne critical

applications,» EASA – Research Project., 2008.

[7] RTCA, DO-297 - Integrated Modular Avionics (IMA) development, guidance and certification

consideration, Radio Technical Commission for Aeronautics (RTCA), 2005.

[8] «Wikipedia,» [En ligne]. Available: www.wikipedia.org.

[9] International Standard Organisation - WG16, «ISO 26262: RoadVehicle Functional Safety,»

International Standard Organisation , 2011.

[10] H. Forsberg et K. Karlsson, «COTS CPU Selection Guidelines for Safety-Critical Applications,» chez

25th Digital Avionics Systems Conference, IEEE/AIAA, 1-12,

http://dx.doi.org/10.1109/DASC.2006.313701, 2006.

[11] B. Green, J. Marotta, B. Petre, K. Lillestolen, R. Spencer, N. Gupta, D. O’Leary, J. Lee, J. Strasburger,

A. Nordsieck, B. Manners et R. and Mahapatra, «DOT/FAA/AR-11/2: Handbook for the Selection

and Evaluation of Microprocessors for Airborne Systems,» Federal Aviation Administration, February

2011.

[12] R. Mahapatra et S. Ahmad, «DOT/FAA/AR-06/34: Microprocessor evaluations for safety-critical,

real-time applications: authority for expenditure no. 43 phase 1 report,» FAA, December 2006.

[13] R. Mahapatra, P. Bhojwani et J. Lee, «DOT/FAA/AR-08/14: Microprocessor evaluations for safety-

critical, real-time applications: authority for expenditure no. 43 phase 2 report,» FAA, June 2008.

[14] R. Mahapatra, P. Bhojwani, J. Lee et Y. Kim, «DOT/FAA/AR-08/55: Microprocessor Evaluations for

Safety-Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 3 Report,» FAA,

February 2009.

[15] R. Mahapatra, J. Lee, N. Gupta et B. Manners, «DOT/FAA/AR-10/21: Microprocessor Evaluations for

Safety-Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 4 Report,» FAA,

September 2010.

[16] R. Mahapatra, J. Lee, N. Gupta et B. Manners, «DOT/FAA/AR-11/5: Microprocessor Evaluations for

Safety-Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 5 Report,» FAA,

May 2011.

[17] X. Jean, M. Gatti, G. Berthon et M. Fumey, «EASA.2011/6 - The Use of Multicore processors in

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 226 Réf. CCC/13/001303 – rev. 05

Airborne Systems (MULCOR),» EASA, November 2012.

[18] International Standard Organization / Internation Electrotechnical Commission, “ISO/IEC 7498-1

Information technology – Open Systems Interconnection – Basic Reference Model: The Basic

Model”.

[19] Department of Defense, «MIL-STD-1553B Notice 4 : Interface Standard for Digital Time Division

Command/Response Multiplex Data bus,» Department Of Defense - United State of America, 1996.

[20] Data Device Corporation, «Military Flight Control Solutions for Cost-Effective Commercial

Avionics,» Data Device Corporation, [En ligne]. Available: http://www.ddc-

web.com/commercial/default.htm. [Accès le 11 09 2013].

[21] Data Device Corporation, “PCI-Express AceXtreme, Product Brief DD-42900 Rev 1,” Data Device

Corporation, Bohemia (New-York), 2013.

[22] Micron Technology, Inc., “GENERAL DDR SDRAM FUNCTIONALITY - TN-46-05,” Micron

DesignLine, vol. 8, no. 3, pp. 65-76, 2001.

[23] F. MASUOKA, M. MOMODOMI, Y. IWATA et R. SHIROTA, «New ultra high density EPROM and

flash EEPROM with NAND structure cell,» chez Electron Devices Meeting, 1987 International

(Volume:33) , 1987.

[24] K. Faxén, C. Bengtsson, M. Brorsson, H. Grahn, E. Hagersten, B. Jonsson, C. Kessler, B. Lisper, S. P.

et B. Svensson, «Multicore computing—the state of the art,» chez Multicore Days organized by SICS,

Swedish Multicore Initiative and Ericsson Software Research, 2008.

[25] V. Brindejonc, G. Marcuccilli et S. Petit, «System FMECA in the framework of ISO 26262,» chez

Lambda-Mu 17, La Rochelle, October 2010.

[26] International Electrotechnical Commission, IEC 61508: Functional safety of

electrical/electronic/programmable electronic safety-related systems - Ed 2.0, International

Electrotechnical Commission, 2010.

[27] M. Squair, “Safety, Software Architecture and MIL-STD-1760.,” in Proc. Eleventh Australian

Workshop on Safety-Related Programmable Systems (SCS 2006), Melbourne (Australia), 2006.

[28] Department of Defense, «MIL-STD-1760D: Interface Standard for Aircraft-store Interconnection

System (AEIS),» Department Of Defense - United state of America, 2003.

[29] PCI-Special Interest Group, “PCI Local Bus Specification, Revision 2.2,,” PCI Special interest group,

December 18, 1998,.

[30] S. Beaulieu, «Analyse du déterminisme et de la fiabilité du protocole PCI express dans un contexte de

certification avionique,» ÉCOLE DE TECHNOLOGIE SUPÉRIEURE - UNIVERSITÉ DU

QUÉBEC, 2012.

[31] A. Asseo, “PCI Express Protocol Studies and Characterization For Integration in The Avionics

Context,” Thales, 2008.

[32] PCI-Special Interest Group, “PCI Express Base Specification 2.0,” PCI-SIG, 2006.

[33] Freescale Semiconductor, Inc., “P4080 QorIQ Integrated Multicore Communication Processor Family

Reference Manual - Document Number: P4080RM Rev. 1,,” Freescale Semiconductor - Refence

Manual, Austin (USA), January 2012.

[34] Integrated Device Technology, Inc., “IDT Tsi384 PCIe-to-PCI Bridge User Manual ;

80E1000_MA001_10,” Integrated Device Technology, Inc., San Jose, California 9513, 2009.

[35] Integrated Device Technology, Inc., «IDT Tsi384 Device Errata, 80E1000_ER001_09,» Integrated

Device Technology, Inc., San Jose, California 95138 , 2009.

[36] J. Ajanovic, Jackson and Carl, “PCI Express™ Advanced Hardware Topics & Specification Updates,”

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 227 Réf. CCC/13/001303 – rev. 05

2004. [Online]. Available: http://www.pcisig.com/developers/main/training_materials/#2004.

[Accessed 06 09 2013].

[37] Holt Integrated Circuit, Inc., “HI-3585, HI-3586 : ARINC 429 Terminal IC with SPI Interface -

(DS3585 Rev. I),” HOLT INTEGRATED CIRCUITS, 2012.

[38] Data Device Corporation , “DD-00429: ARINC 429 MICROPROCESSOR INTERFACE - Datasheet

rev L,” Data Device Corporation , Bohemia (New-York), 2010.

[39] Data Device Corporation, “DD-42900: ARINC 429 MICROPROCESSOR INTERFACE DEVICE,

Datasheet,” Data Device Corporation, Bohemia (New-York), 1999.

[40] AIRLINES ELECTRONIC ENGINEERING COMMITTEE, “ARINC Specification 429 Part 1-17:

Mark 33 – Digital Information Transfer System (DITS),” AERONAUTICAL RADIO, INC,

Annapolis (MA), 2004.

[41] Data Device Corporation, “PCI-Express AceXtreme® - Datasheet , Rev A,” Data Device Corporation,

Bohemia (New-York), 2013.

[42] Micron Technology, Inc., «1Gb: x4, x8, x16 DDR3 SDRAM Features,» Micron Technology, Inc.,

2006.

[43] JEDEC, «DDR3 SDRAM Standard,» JEDEC Solid State Technology Association, Arlington (USA),

2012.

[44] GreenLiant, “NAND Controller GLS55VD031 - Datasheet S71397-04-000,” Greenliant Systems,

Ltd., 2010.

[45] GreenLiant, “NAND Controller GLS55VD020 - Datasheet S71355-04-000,” Greenliant Systems,

Ltd., 2010.

[46] Lattice Semiconductor, Inc., “NAND Flash Controller - RD1055 v01.2,” Lattice Semiconductor, Inc.,

2010.

[47] QuickLogic, “NAND Flash controller Datasheet Rev A,” QuickLogic Corporation, 2008.

[48] Spansion, “S34ML08G1 NAND Flash Memory for Embedded Data Sheet (Advance Information)

Release 05,” Spansion, 2013.

[49] Spansion, «Hyperstone F2 and F3 NAND Controllers/Spansion® NAND – Enhancing Power Fault

Tolerance - Application Note,» Spansion Inc, 2013.

[50] Freescale Semiconductor, Inc., «MPC8610 Integrated host processor Fact sheet; MPC8610FS Rev. 2,»

Freescale Semiconductor - Fact Sheet, Austin (USA), 2007.

[51] Freescale Semiconductor, Inc., «MPC8610 Integrated Host Processor Hardware Specifications -

MPC8610EC - Rev 2.,» Freescale Semiconductor - Datasheet, Austin (USA), 2009.

[52] Freescale Semiconductor, Inc., “MPC8610 Integrated Host Processor Reference Manual -

MPC8610RM, Rev. 1.,” Freescale Semiconductor - Reference Manual, Austin (USA), 2010.

[53] Freescale Semiconductor, Inc, “e600 PowerPC™ Core Reference Manual - E600CORERM - Rev. 0,,”

Freescale Semiconductor - Reference Manuals, Austin (USA), 2006.

[54] Freescale Semiconductor, Inc., “MPC8610 Chip Errata - MPC8610CE - Rev 0.,” Freescale

Semiconductor - Chip Errata, Austin (USA), 2010.

[55] N. Garinger, M. Dorr, M. Naumann and G. Walker, "On Chip Network". US Patent US Patent

7.277.449B2, 2 October 2007.

[56] Freescale Semiconductor, Inc., “Outstanding Data Tenures on the MPX Bus - AN2161 - Rev 0.1,”

Freescale Semiconductor, Inc., Austin (USA), 2004.

[57] Freescale Semiconductor, Inc., «QorIQ™ P4080 Communications Processor Product Brief -

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 228 Réf. CCC/13/001303 – rev. 05

Document Number: P4080PB Rev. 1,» Freescale Semiconductor- Product Brief, Austin (USA),

September 2008.

[58] Freescale Semiconductor, Inc., “P4080/P4081 QorIQ Integrated Processor Hardware Specifications,”

Freescale Semiconductor - Data Sheet: Technical Data, Austin (USA), April 2013.

[59] Freescale Semiconductor, "e500mc Core Reference Manual, Rev 3.," Freescale Semiconductor, 2013.

[60] Freescale Semiconductor, «EREF 2.0: A Programmer’s Reference Manual for Freescale Power

Architecture® Processors - Rev. 0,» Freescale Semiconductor Reference Manual, September 2011.

[61] Freescale Semiconductor, Inc., “P4080 Chip Errata, P4080CE Rev. N,” Freescale Semiconductor -

Chip Errata, Austin (USA), 2012.

[62] P. Genua, «Error Correction and Error Handling on PowerQUICC™ III Processors - Document

Number: AN3532 Rev. 0,» Freescale Semiconductor Application Note, November 2007.

[63] E. Bost, «Hardware Support for Robust Partitioning in Freescale QorIQ Multicore SoCs (P4080 and

derivatives),» Freescale Semiconductor White Paper - QORIQHSRPWP - Rev. 0, May 2013.

[64] Z. Gu et Q. Zhao, «A State-of-the-Art Survey on Real-Time Issues in Embedded Systems

Virtualization,» Journal of Software Engineering and Applications, vol. 05, pp. 277 - 291, 2012.

[65] X. Jean, D. Faura, M. Gatti, L. Pautet et T. Robert, «Software Approach for Managing Shared

Resources in Multicore IMA Systems,» chez Digital Avionics Systems Conference (DASC), Syracuse

(USA), 2013 ,IEEE/AIAA 32st.

[66] S. Deshpande, "Flow Control Mechanisms for Avoidance or Retries and/or Deadlocks in an

Interconnect". United-State Patent US 2010/0318713 A1, 16 12 2010.

[67] Freescale Semiconductor, Inc;, “P5020 Chip Errata, P5020CE rev. J,” Freescale Semiconductor - Chip

errata, Austin (USA), 2013.

[68] PCI-Special Interest Group, “PCI Express® Compliance Testing,” PCI-Special Interest Group, 2013.

[Online]. Available: http://www.pcisig.com/specifications/pciexpress/compliance. [Accessed 15 09

2013].

[69] P. Dervin, “Method of testing data paths in an electronic circuit”. USA Patent US 7913129 B2, 22 03

2011.

[70] V. Brindejonc and N. Plaze, “Rédaction, vérification et gestion des exigences de Sûreté de

Fonctionnement,” in Lambda-Mu 18, Tours, 2012.

[71] Freescale Semiconductor, Inc, “P5020 QorIQ Integrated Multicore Communication Processor Family

Reference Manual - P5020RM, Rev 3.,” Freescale Semiconductor, Inc, Austin (Tx), 2013.

[72] C. E. Shannon, «A Mathematical Theory of Communication,» The Bell System Technical Journal, vol.

27, pp. 379-423 and 623-656, July and October, 1948.

[73] J. Cook, “Flash memory 101: An Introduction to NAND flash,” EE-Times - Connecting the Global

Electronics Community, 20 March 2006. [Online]. Available:

http://www.eetimes.com/document.asp?doc_id=1272118. [Accessed 13 September 2013].

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 229 Réf. CCC/13/001303 – rev. 05

ANNEX 1: MAPPING OF A MULTICORE CONFIGURATION, CONTROL AND
STATUS REGISTER (CCSR)

This table is reworked on the basis of data present in [71].

Block Base
Address
(Hex) Block

Section/
Page Comments

volume
of the
zone

0x00_0000
-
0x00_0FFF

Local access
control-Local
configuration control
Local access
control-Local access
windows

Local Configuration
Control Memory Map - 4095

0x00_1000
-
0x00_7FFF Reserved - - 28671

0x00_8000
-
0x00_8FFF

DDR memory
controller 1

DDR Memory
Controller Memory
Map - 4095

0x00_9000
-
0x00_9FFF

DDR memory
controller 2

DDR Memory
Controller Memory
Map

P5020 only; not present on
P5010 4095

0x00_A000
-
0x00_FFFF Reserved - - 24575

0x01_0000
-
0x01_0FFF

CoreNet
 TM

 platform

cache 1 (CPC1)

CoreNet
 TM

 Platform

Cache (CPC) Memory
Map - 4095

0x01_1000-
0x01_1FFF

CoreNet
 TM

 platform

cache 2 (CPC2)

CoreNet
 TM

 Platform

Cache (CPC) Memory
Map

P5020 only; not present on
P5010 4095

0x01_2000-
0x01_7FFF Reserved - - 24575

0x01_8000-
0x01_8FFF

CoreNet
 TM

coherency fabric
(CCF)

CoreNet
 TM

Coherency
Fabric (CCF) Memory
Map - 4095

0x01_9000-
0x01_FFFF Reserved - - 28671

0x02_0000-
0x02_0FFF PAMU partition 1 PAMU Memory Map

The PAMU is partitioned into
16 identical instances. Not all 4095

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 230 Réf. CCC/13/001303 – rev. 05

Block Base
Address
(Hex) Block

Section/
Page Comments

volume
of the
zone

0x02_1000-
0x02_1FFF PAMU partition 2 PAMU Memory Map

are necessarily backed with
physical hardware. However,
all of them must be
programmed identically or
undefined behaviour may
result.

4095

0x02_2000-
0x02_2FFF PAMU partition 3 PAMU Memory Map 4095

0x02_3000-
0x02_3FFF PAMU partition 4 PAMU Memory Map 4095

0x02_4000-
0x02_4FFF PAMU partition 5 PAMU Memory Map 4095

0x02_5000-
0x02_5FFF PAMU partition 6 PAMU Memory Map 4095

0x02_6000-
0x02_6FFF PAMU partition 7 PAMU Memory Map 4095

0x02_7000-
0x02_7FFF PAMU partition 8 PAMU Memory Map 4095

0x02_8000-
0x02_8FFF PAMU partition 9 PAMU Memory Map 4095

0x02_9000-
0x02_9FFF PAMU partition 10 PAMU Memory Map 4095

0x02_A000-
0x02_AFFF PAMU partition 11 PAMU Memory Map 4095

0x02_B000-
0x02_BFFF PAMU partition 12 PAMU Memory Map 4095

0x02_C000-
0x02_CFFF PAMU partition 13 PAMU Memory Map 4095

0x02_D000-
0x02_DFFF PAMU partition 14 PAMU Memory Map 4095

0x02_E000-
0x02_EFFF PAMU partition 15 PAMU Memory Map 4095

0x02_F000-
0x02_FFFF PAMU partition 16 PAMU Memory Map 4095

0x03_0000-
0x03_FFFF Reserved - - 65535

0x04_0000-
0x04_FFFF

MPIC-Global
registers MPIC Memory Map

Global configuration:
0x04_1000
Global timers: 0x04_1100 65535

0x05_0000-
0x05_FFFF

MPIC-Interrupt
source registers MPIC Memory Map

External IRQs: 0x05_0000
Internal IRQs: 0x05_1200 65535

0x06_0000-
0x06_FFFF

MPIC-Processor
(core) registers MPIC Memory Map - 65535

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 231 Réf. CCC/13/001303 – rev. 05

Block Base
Address
(Hex) Block

Section/
Page Comments

volume
of the
zone

0x07_0000-
0x0B_FFFF Reserved - - 327679

0x0C_0000-
0x0C_FFFF

RapidIO
Architectural
registers

SRIO Memory
Map/Register
Definition

65535

0x0D_0000-
0x0D_FFFF

RapidIO
Implementation
registers

SRIO Memory
Map/Register
Definition

65535

0x0E_0000-
0x0E_0FFF

Configuration/pin
control

Device Configuration
and Pin Control
Memory Map/Register
Definition

4095

0x0E_1000-
0x0E_1FFF Clocking

Clocking Memory
Map/ Register
Definition

4095

0x0E_2000-
0x0E_2FFF

Run control/power
management
(RCPM)

RCPM Memory Map/
Register Definition

4095

0x0E_3000-
0x0E_7FFF Reserved - - 20479

0x0E_8000-
0x0E_8FFF

Security fuse
processor (SFP)

Security fuse
processor (SFP)
memory map

4095

0x0E_9000-
0x0E_9FFF Reserved - - 4095

0x0E_A000-
0x0E_AFFF SerDes control

SRDS Memory Map/
Register Definition

4095

0x0E_B000-
0x0F_FFFF Reserved - - 86015

0x10_0000-
0x10_0FFF DMA controller 1

DMA controller
memory map

4095

0x10_1000-
0x10_1FFF DMA controller 2

DMA controller
memory map

4095

0x10_2000-
0x10_FFFF Reserved - - 57343

0x11_0000-
0x11_0FFF

Enhanced serial
peripheral interface
(eSPI)

Enhanced serial
peripheral interface
(eSPI) memory map

4095

0x11_1000-
0x11_3FFF Reserved - - 12287

0x11_4000-
0x11_4FFF

Enhanced secure
digital high capacity
(eSDHC)

eSDHC memory map/
register definition

4095

0x11_5000-
0x11_7FFF Reserved - - 12287

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 232 Réf. CCC/13/001303 – rev. 05

Block Base
Address
(Hex) Block

Section/
Page Comments

volume
of the
zone

0x11_8000-
0x11_8FFF Dual I²C controller 1

I²C Controller Memory
Map

I²C 1: 0x11_8000
I²C 2: 0x11_8100 4095

0x11_9000-
0x11_9FFF Dual I²C controller 2

I²C Controller Memory
Map

I²C 3: 0x11_9000
I²C 4: 0x11_9100 4095

0x11_A000-
0x11_BFFF Reserved - - 8191

0x11_C000-
0x11_CFFF DUART controller 1

DUART Memory Map/
Register Definition

UART1: 0x11_C500
(DUART1)
UART2: 0x11_C600
(DUART1) 4095

0x11_D000-
0x11_DFFF DUART controller 2

DUART Memory Map/
Register Definition

UART3: 0x11_D500
(DUART2)
UART4: 0x11_D600
(DUART2) 4095

0x11_E000-
0x12_3FFF Reserved -

24575

0x12_4000-
0x12_4FFF

Enhanced local bus
controller (eLBC)

Enhanced Local Bus
Controller (eLBC)
Memory Map

4095

0x12_5000-
0x12_FFFF Reserved -

45055

0x13_0000-
0x13_0FFF GPIO controller

GPIO Memory
Map/Register
Definition

4095

0x13_1000-
0x13_7FFF Reserved -

28671

0x13_8000-
0x13_8FFF

Pre-boot loader
(PBL)

Reserved Address
Space Used as
Internal PBL
Commands

Software cannot write to the
PBL CCSR space directly.
However, special PBL
commands may be leveraged
during pre-boot initialization
by referencing specific CCSR
offsets (unique commands
have unique CCSR offsets).
See Reserved Address
Space Used as Internal PBL
Commands," for more
information. 4095

0x13_9000-
0x1D_FFFF Reserved

684031

0x1E_0000-
0x1E_3FFF RMan

See"QoRIQ Datapath
Acceleration
Architecture
Reference Manual"

16383

0x1E_4000-
0x1F_FFFF Reserved

114687

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 233 Réf. CCC/13/001303 – rev. 05

Block Base
Address
(Hex) Block

Section/
Page Comments

volume
of the
zone

0x20_0000-
0x20_0FFF

PCI Express
controller 1

PCI Express memory
mapped registers

4095

0x20_1000-
0x20_1FFF

PCI Express
controller 2

PCI Express memory
mapped registers

4095

0x20_2000-
0x20_2FFF

PCI Express
controller 3

PCI Express memory
mapped registers

4095

0x20_3000-
0x20_3FFF

PCI Express
controller 4

PCI Express memory
mapped registers

4095

0x20_4000-
0x20_FFFF Reserved

49151

0x21_0000-
0x21_0FFF USB 1 (host only) USB Memory Map

4095

0x21_1000-
0x21_1FFF USB 2 (dual role) USB Memory Map

4095

0x21_2000-
0x21_3FFF Reserved

8191

0x21_4000-
0x21_4FFF USB PHY

4095

0x21_5000-
0x21_FFFF Reserved

45055

0x22_0000-
0x22_0FFF SATA 1

4095

0x22_1000-
0x22_1FFF SATA 2

4095

0x22_2000-
0x2F_FFFF Reserved

909311

0x30_0000-
0x30_FFFF SEC 4.2

65535

0x31_0000-
0x31_3FFF Reserved

16383

0x31_4000-
0x31_4FFF Security monitor

Security monitor
memory map/ register
definition

4095

0x31_5000-
0x31_5FFF Reserved

4095

0x31_6000-
0x31_6FFF

Pattern match
engine (PME)

4095

0x31_7000-
0x31_7FFF Reserved

4095

0x31_8000-
0x31_8FFF

Queue manager
(QMan)

4095

0x31_9000-
0x31_9FFF Reserved

4095

0x31_A000-
0x31_AFFF

Buffer manager
(BMan)

4095

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 234 Réf. CCC/13/001303 – rev. 05

Block Base
Address
(Hex) Block

Section/
Page Comments

volume
of the
zone

0x31_B000-
0x31_FFFF Reserved

20479

0x32_0000-
0x32_FFFF RAID Engine (RE)

65535

0x33_0000-
0x3F_FFFF Reserved

851967

0x40_0000-
0x4F_FFFF Frame manager

104857
5

0x50_0000-
0xFF_FFFF Reserved

115343
35

 EOF
 Table 28: Address mapping of P5020 CCSR

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 235 Réf. CCC/13/001303 – rev. 05

ANNEX 2: SUMMARY OF SUGGESTIONS

This annex collects the suggestions defined in chapter 9.

Application of these suggestions cannot be requested. Nevertheless if a suggestion is applied, the activities

proposed should be realized.

Depending upon the preconditions, two types of suggestions are proposed:

o Methodological suggestions: in this case the preconditions are the study phase (mitigation strategy,

test, integration);

o Technique suggestion (one occurrence) where precondition is the “in operation” phase.

COTS-

AEH_Suggestion_1.

Use of internal detection / mitigation mechanisms

In global mitigation strategy definition, the internal mechanisms selected should

be:

- Specified;

- Managed: activation mode, configuration, error handling;

- Tested.

COTS-

AEH_Suggestion_2.

Verification of information transmitted during tests

During test sequences, data transmitted through the COTS should be monitored

with respect to the possible failure mode identified.

COTS-

AEH_Suggestion_3.

Verification of detection / mitigation mechanisms status during tests

During test sequences, COTS internal detection/Mitigation Mechanisms that are

embedded in COTS or in COTS interfaces should be monitored and their status

should be reported

COTS-

AEH_Suggestion_4.

Status verification of inhibited functions during tests

During test sequences, both configuration status and outputs of COTS inhibited

features should be monitored.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 236 Réf. CCC/13/001303 – rev. 05

COTS-

AEH_Suggestion_5.

Configuration management of COTS under test

When test are performed on several instances of the same COTS:

(a) their configuration should be identical;

(b) This configuration should be managed in configuration;

(c) An impact analysis should be performed in case of modification of

configuration during project time (after exploitable tests begun).

COTS-

AEH_Suggestion_6.

Verification of Detection and Mitigation Mechanisms

During integration tests at various levels, detection / mitigation mechanisms should

be tested in particular through fault injection tests.

COTS-

AEH_Suggestion_7.

Integration level for definition of detection / mitigation mechanisms

During definition of detection / mitigation strategy, COTS design error detection

/ mitigation mechanisms should be defined as closer as possible from the COTS.

System and aircraft levels may be considered only when no detection / mitigation

could be implemented locally.

COTS-

AEH_Suggestion_8.

Usage of COTS internal detection/mitigation mechanisms

During COTS design error mitigation strategy elaboration, a detection / mitigation

mechanism implemented within the COTS can be selected if

o Its triggering can be monitored during COTS functional and endurance tests;

o It can be tested by fault injections tests on COTS;

o A mechanism can be implemented in operation in order to cover its latent

failures.

COTS-

AEH_Suggestion_9.

Usage of COTS internal detection mechanisms

During COTS design error mitigation strategy elaboration, a detection /

mechanism implemented within the COTS (such as PIC or JTAG blocks) can be

selected if :

o Its triggering can be monitored during COTS functional and endurance tests;

o It can be tested by fault injections tests on COTS;

o A mechanism can be implemented in operation in order to cover its latent

failures.

In this case, mitigations should be applied by an external device.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 237 Réf. CCC/13/001303 – rev. 05

COTS-

AEH_Suggestion_10.

Usage of COTS output monitoring

During COTS design error mitigation strategy elaboration, if a detection

mechanism based on COTS outputs monitoring is used

o The detection principle should be specified to the message receiver;

o The message receiver monitoring implementation should be tested in

integration tests (*);

o A mechanism can be implemented in operation in order to cover detection

mechanism latent failures.

(*) the test can be done at board, LRU or system level, depending on the receiver.

COTS-

AEH_Suggestion_11.

Periodic frame monitoring

During COTS design error mitigation strategy elaboration, if a periodic frame

monitoring mechanism is used in the framework of COTS output monitoring:

o The latency induced by the confirmation time should be considered.

COTS-

AEH_Suggestion_12.

COTS configuration monitoring

During operation, any change in COTS critical configuration registers should be

detected by a periodical monitoring.

This monitoring may be tested in order to avoid latent faults except if the default

configuration of unused blocks or features is showed to be innocuous.

COTS-

AEH_Suggestion_13.

End-to-End protection

During COTS design error mitigation strategy elaboration, if an end-to-end

protection mechanism is defined in order to detect COTS design error,

o It should be encoded in COTS higher layers (applicative or higher Operating

system layers)

COTS-

AEH_Suggestion_14.

Monitoring by an external independent item on the data path

During COTS design error mitigation strategy elaboration, if a monitoring by an

external independent monitoring on the data path is defined in order to detect

COTS design error,

o The data and applied function should be chosen carefully;

o The periodicity of the monitoring should be considered according to the fault

tolerance time interval of the system.

COTS-AEH

Failure Mode & Mitigation

EASA

 Thales Avionics page 238 Réf. CCC/13/001303 – rev. 05

COTS-

AEH_Suggestion_15.

Monitoring by a Watchdog

During COTS design error mitigation strategy elaboration, if a monitoring by a

watchdog is defined in order to detect COTS design error,

o Independence between the watchdog and the monitored device should be

assessed (e.g. independent clock reference).

COTS-

AEH_Suggestion_16.

Error mitigation of memories and memory controllers

During COTS design error mitigation strategy elaboration, if a memory monitoring

based on information addendum (Checksum, CRC, data mirroring) is defined,

o The information added should be segregated as much as possible from the

protected data.

COTS-

AEH_Suggestion_17.

Avoidance of latent failure of detection / mitigation mechanisms

During COTS design error mitigation strategy elaboration, if a detection and/or

monitoring mechanism is defined in order to detect COTS design error,

o this mechanism should be monitored in order to keep latent failures under

control;

unless it is shown that the defined mechanism

o is free of design error,

o is sufficiently reliable.

Postal address Visiting address Tel
Fax
Mail
Web

